In the current study, we used a combination of gel electrophoresis, circular dichroism, and UV melting analysis to investigate the structure and stability of G-quadruplexes formed by long telomeric DNAs from Oxytricha and human, where the length of the repeat (n)=4 to 12. We found that the Oxytricha telomeric DNAs, which have the sequence (TTTTGGGG)n, folded into intramolecular and intermolecular G-quadruplexes depending on the ionic conditions, whereas human telomeric DNAs, which have the sequence (TTAGGG)n, formed only intramolecular G-quadruplexes in all the tested conditions. We further estimated the thermodynamic parameters of the intramolecular G-quadruplex. We found that thermodynamic stabilities of G-quadruplex structures of long telomeric DNAs (n=5 to 12) are mostly independent of sequence length, although telomeric DNAs are more stable when n=4 than when n>or=5. Most importantly, when n is a multiple of four, the change in enthalpy and entropy for G-quadruplex formation increased gradually, demonstrating that the individual G-quadruplex units are composed of four repeats and that the individual units do not interact. Therefore, we propose that the G-quadruplexes formed by long telomeric DNAs (n>or=8) are bead-on-a-string structures in which the G-quadruplex units are connected by one TTTT (Oxytricha) or TTA (human) linker. These results should be useful for understanding the structure and function of telomeres and for developing improved therapeutic agents targeting telomeric DNAs.
We systematically and quantitatively investigated the structure and thermodynamics of G-quadruplexes of RNAs and corresponding DNAs of the same sequences under molecular crowding conditions that mimic the high osmotic stress induced by the numerous molecules inside of living cells. Structural analyses demonstrated that various telomere RNA sequences folded into parallel-stranded G-quadruplexes in a manner independent of the surrounding conditions with different cations under both dilute and molecular crowding conditions. In contrast, DNA G-quadruplexes showed structural polymorphism. Moreover, we demonstrated that the G-quadruplexes of the RNA sequences were more stable than those of the same DNA sequences. These results show that a single and robust RNA G-quadruplex structure can exist in a manner independent of the sequence and surrounding conditions. To confirm this, we studied a guanine-rich sequence located in the 5'-untranslated region of human bcl-2 mRNA that is thought to play a role in translation. The results revealed a stable parallel G-quadruplex that formed under all conditions tested. For example, a bcl-RNA G-quadruplex in the presence of 5 mM KCl [free energy change at 25 degrees C (DeltaG degrees (25)) of -5.42 kcal/mol] was more stable than its corresponding DNA G-quadruplex (DeltaG degrees (25) = -2.31 kcal/mol). Our results further indicated that water molecules binding to the 2'-OH group of RNA G-quadruplexes play a critical role in their formation and stability.
The structure and stability of long telomeric DNAs, (T(2)AG(3))(n) (n = 4-20), were studied under dilute and molecular crowding conditions in the presence of Na(+) and K(+). Structural analysis showed that the long telomeric DNAs formed intramolecular G-quadruplexes under all conditions. In the presence of Na(+), the telomeric DNAs formed an antiparallel G-quadruplex under both dilute and molecular crowding conditions. However, in the presence of K(+), molecular crowding induced a conformational change from mixed to parallel. These results are consistent with numerous structural studies for G-quadruplex units under molecular crowding conditions. Thermodynamic analysis showed that G-quadruplexes under the molecular crowding conditions were obviously more stable than under dilute condition. Interestingly, this stabilization effect of molecular crowding was reduced for the longer telomeric DNAs, indicating that the G-quadruplex structure of long telomeric DNAs is not as stable under molecular crowding conditions, as implied from the large stabilization of isolated G-quadruplex units as previously reported. Moreover, a hydration study revealed that upon structure folding, the interior of a G-quadruplex unit was dehydrated, whereas the linker between two units was more hydrated. It is thus possible to propose that the linkers between G-quadruplex units are ordered structures but not random coils, which could have an important influence on the stability of the entire structure of long telomeric DNAs. These results are significant to elucidate the biological characteristics of telomeres, and can aid in the rational design of ligands and drugs targeting the telomere and related proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.