The rapid development of large-scale livestock husbandry has caused serious air pollution problems (e.g., The Tuzuoqi demonstration farm belonging to the Yili Group. The farm is located in the suburb of Hohhot City in northern China). In this study, the gases in typical areas of a largescale dairy farm were sampled and measured for volatile organic compounds (VOCs), hydrogen sulfide, and ammonia concentrations. Fifty-two species of VOCs were identified. The VOCs emitted from the cowshed mainly consisted of halogenated hydrocarbons (16,960 µg/m 3), ketones (15,700 µg/m 3), esters (9889 µg/m 3), and sulfur compounds (3677 µg/m 3). The VOCs from the oxidation pond were mainly composed of halogenated hydrocarbons (21,940 µg/m 3) and ketones (3589 µg/m 3). The VOCs from the solid-liquid separation tank comprised halogenated hydrocarbons (32,010 µg/m 3), ketones (7169 µg/m 3), and sulfur compounds (1003 µg/m 3). The highest concentrations of ammonia and hydrogen sulfide were obtained from the milking parlor and solid-liquid separation tank, respectively. The ammonia concentration declined gradually due to the superposition of ammonia emitted from the cowshed and milking parlor. Analysis results of the influences of distance and meteorological factors on the dispersion of ammonia and hydrogen sulfide suggested that the dilution factors decreased with increasing distance from the emission source. Within distance ranges of 0-10 and 10-25 m, the concentration dilution factors were positively correlated with wind speed and temperature but negatively correlated with humidity and atmospheric pressure. The results of our work can provide a theoretical basis for the prevention and control of odorous gases in large-scale livestock farms. Implications: Gases in typical areas of a large-scale dairy farm were sampled, and a total of 52 species of VOCs were identified. The highest concentrations of ketones, sulfur compounds, and esters were obtained at the cowshed (15,700, 3677, and 9889 µg/m 3 , respectively). Within the distance ranges of 0-10 and 10-25 m, the concentration dilution factors were positively correlated with wind speed and temperature.
The rapid loss of Arctic Sea ice cover and thickness diminishes the surface albedo, which increases the ocean’s absorption of solar heat and exacerbates the Arctic amplification effect. According to the most recent research from the Intergovernmental Panel on Climate Change, the Sixth Assessment Report (IPCC, AR6), the extent of summer sea ice is anticipated to decrease below 1 million km2 by the 2050s as a result of the extreme climate. Nevertheless, past and future changes in sea ice albedo radiative forcing and the resulting economic cost remain to be explored in systematic and multi-disciplinary manners. In this study, we first analyze the evolution of Arctic sea ice radiative forcing (SIRF) from 1982 to 2100 using a radiative kernel method based on albedo data from the Polar Pathfinder-Extent (APP-x) and Coupled Model Intercomparison Project 5 (CMIP5). Then, the SIRF is converted to CO2 equivalent emissions via the Dynamic Integrated Model of Climate and Economy (DICE) model. Finally, the associated costs are calculated using the substitute cost method, based on the social cost of carbon to achieve the Paris Agreement targets. The results show that the average Arctic SIRF was −0.75 ± 0.1 W·m−2 between 1982 and 2020, and increased by 0.12 W·m−2 during this period. The SIRF in April–June accounts for nearly 77% of the average annual value, with a maximum absolute value of –3.2 W·m−2 in May. Through model transformation, it is shown that the Arctic SIRF rising leads to global warming comparable to the effect of an increase of 34.5 Gt of CO2 in the atmosphere relative to pre-industrialization, and results in a loss of 24.4–48.8 trillion USD for climate regulation service (CRS). From 2020 to 2100, in the representative concentration pathway (RCP) 8.5, the Arctic SIRF is projected to increase by 0.31 W·m−2. Combined with the discount rate, the estimated average annual cost over the period ranges from 6.7–13.3 trillion USD. These findings provide a systematic understanding of the radiative effect of Arctic sea ice change on the global climate and the corresponding economic cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.