The direct dose mapping (DDM) and energy/mass transfer mapping (EMT) are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse TPS. We then compared the clinical dosimetric difference between the two algorithms for 10 lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into 10 phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field (DVF) generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the PTV and ITV minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.
The authors present a segment-based convolution method to account for the interplay effect between intrafraction organ motion and the multileaf collimator position for each particular segment in intensity modulated radiation therapy ͑IMRT͒ delivered in a step-and-shoot manner. In this method, the static dose distribution attributed to each segment is convolved with the probability density function ͑PDF͒ of motion during delivery of the segment, whereas in the conventional convolution method ͑"average-based convolution"͒, the static dose distribution is convolved with the PDF averaged over an entire fraction, an entire treatment course, or even an entire patient population. In the case of IMRT delivered in a step-and-shoot manner, the average-based convolution method assumes that in each segment the target volume experiences the same motion pattern ͑PDF͒ as that of population. In the segment-based convolution method, the dose during each segment is calculated by convolving the static dose with the motion PDF specific to that segment, allowing both intrafraction motion and the interplay effect to be accounted for in the dose calculation. Intrafraction prostate motion data from a population of 35 patients tracked using the Calypso system ͑Calypso Medical Technologies, Inc., Seattle, WA͒ was used to generate motion PDFs. These were then convolved with dose distributions from clinical prostate IMRT plans. For a single segment with a small number of monitor units, the interplay effect introduced errors of up to 25.9% in the mean CTV dose compared against the planned dose evaluated by using the PDF of the entire fraction. In contrast, the interplay effect reduced the minimum CTV dose by 4.4%, and the CTV generalized equivalent uniform dose by 1.3%, in single fraction plans. For entire treatment courses delivered in either a hypofractionated ͑five fractions͒ or conventional ͑Ͼ30 fractions͒ regimen, the discrepancy in total dose due to interplay effect was negligible.
The aim of this study is to compare two methodologies of prostate localization in a large cohort of patients. Daily prostate localization using B‐mode ultrasound has been performed at the Nebraska Medical Center since 2000. More recently, a technology using electromagnetic transponders implanted within the prostate was introduced into our clinic (Calypso). With each technology, patients were localized initially using skin marks. Localization error distributions were determined from offsets between the initial setup positions and those determined by ultrasound or Calypso. Ultrasound localization data was summarized from 16,619 imaging sessions spanning seven years. Calypso localization data consists of 1524 fractions in 41 prostate patients treated in the course of a clinical trial at five institutions and 640 localizations from the first 16 patients treated with our clinical system. Ultrasound and Calypso patients treated between March and September 2007 at the Nebraska Medical Center were analyzed and compared, allowing a single institutional comparison of the two technologies. In this group of patients, the isocenter determined by ultrasound‐based localization is on average 5.3 mm posterior to that determined by Calypso, while the systematic and random errors and PTV margins calculated from the ultrasound localizations were 3–4 times smaller than those calculated from the Calypso localizations.Our study finds that there are systematic differences between Calypso and ultrasound for prostate localization.PACS number: 87.63.dh
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.