In this proposal, we design a learned multifrequency image compression approach that uses generalized octave convolutions to factorize the latent representations into high-frequency (HF) and low-frequency (LF) components, and the LF components have lower resolution than HF components, which can improve the rate-distortion performance, similar to wavelet transform. Moreover, compared to the original octave convolution, the proposed generalized octave convolution (GoConv) and octave transposed-convolution (GoTConv) with internal activation layers preserve more spatial structure of the information, and enable more effective filtering between the HF and LF components, which further improve the performance. In addition, we develop a variable-rate scheme using the Lagrangian parameter to modulate all the internal feature maps in the autoencoder, which allows the scheme to achieve the large bitrate range of the JPEG AI with only three models. Experiments show that the proposed scheme achieves much better Y MS-SSIM than VVC. In terms of YUV PSNR, our scheme is very similar to HEVC.Index Terms-learned image compression, octave convolution, variable-rate deep learning models, modulated scheme I. METHOD A. Overview of the Encoding/Decoding Architectures Recently, deep learning-based image compression has shown the potential to outperform standard codecs such as JPEG2000 [7], the H.265/HEVC Intra-based BPG image codec [8], and the intra coding of the upcoming versatile video coding (VVC) standard [5]. In particular, the scheme in [1] even achieves better PSNR than VVC for the Kodak
Face recognition technology has advanced rapidly and has been widely used in various applications. Due to the extremely huge amount of data of face images and the large computing resources required correspondingly in large-scale face recognition tasks, there is a requirement for a face image compression approach that is highly suitable for face recognition tasks. In this paper, we propose a deep convolutional autoencoder compression network for face recognition tasks. In the compression process, deep features are extracted from the original image by the convolutional neural networks to produce a compact representation of the original image, which is then encoded and saved by existing codec such as PNG. This compact representation is utilized by the reconstruction network to generate a reconstructed image of the original one. In order to improve the face recognition accuracy when the compression framework is used in a face recognition system, we combine this compression framework with a existing face recognition network for joint optimization. We test the proposed scheme and find that after joint training, the Labeled Faces in the Wild (LFW) dataset compressed by our compression framework has higher face verification accuracy than that compressed by JPEG2000, and is much higher than that compressed by JPEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.