ObjectiveOsteosarcoma (OS) is a common bone malignancy with poor prognosis. We aimed to investigate the relationship between cuproptosis-related lncRNAs (CRLncs) and the survival outcomes of patients with OS.MethodsTranscriptome and clinical data of 86 patients with OS were downloaded from The Cancer Genome Atlas (TCGA). The GSE16088 dataset was downloaded from the Gene Expression Omnibus (GEO) database. The 10 cuproptosis-related genes (CRGs) were obtained from a recently published article on cuproptosis in Science. Combined analysis of OS transcriptome data and the GSE16088 dataset identified differentially expressed CRGs related to OS. Next, pathway enrichment analysis was performed. Co-expression analysis obtained CRLncs related to OS. Univariate COX regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were used to construct the risk prognostic model of CRLncs. The samples were divided evenly into training and test groups to verify the accuracy of the model. Risk curve, survival, receiver operating characteristic (ROC) curve, and independent prognostic analyses were performed. Next, principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) analysis were performed. Single-sample gene set enrichment analysis (ssGSEA) was used to explore the correlation between the risk prognostic models and OS immune microenvironment. Drug sensitivity analysis identified drugs with potential efficacy in OS. Real-time quantitative PCR, Western blotting, and immunohistochemistry analyses verified the expression of CRGs in OS. Real-time quantitative PCR was used to verify the expression of CRLncs in OS.ResultsSix CRLncs that can guide OS prognosis and immune microenvironment were obtained, including three high-risk CRLncs (AL645608.6, AL591767.1, and UNC5B-AS1) and three low-risk CRLncs (CARD8-AS1, AC098487.1, and AC005041.3). Immune cells such as B cells, macrophages, T-helper type 2 (Th2) cells, regulatory T cells (Treg), and immune functions such as APC co-inhibition, checkpoint, and T-cell co-inhibition were significantly downregulated in high-risk groups. In addition, we obtained four drugs with potential efficacy for OS: AUY922, bortezomib, lenalidomide, and Z.LLNle.CHO. The expression of LIPT1, DLAT, and FDX1 at both mRNA and protein levels was significantly elevated in OS cell lines compared with normal osteoblast hFOB1.19. The mRNA expression level of AL591767.1 was decreased in OS, and that of AL645608.6, CARD8-AS1, AC005041.3, AC098487.1, and UNC5B-AS1 was upregulated in OS.ConclusionCRLncs that can guide OS prognosis and the immune microenvironment and drugs that may have a potential curative effect on OS obtained in this study provide a theoretical basis for OS survival research and clinical decision-making.
Objective: Ankylosing spondylitis (AS) is associated with a variety of gut microbiotas. We aim to analyze the causal relationship between the two at the genetic level. Methods: Mendelian randomization (MR) is a type of instrumental variables (IVs) analysis; MR follows the Mendelian genetic rule of “parental alleles are randomly assigned to offspring” and takes genetic variation as IVs to infer the causal association between exposure factors and study outcome in observational studies. Genome-wide association study (GWAS) summary data of AS were from the FinnGen consortium, and the gut microbiota (Bacteroides, Streptococcus, Proteobacteria, Lachnospiraceae) were from the MiBioGen consortium. The TwoSampleMR and MRPRESSO packages of the R were used to perform a two-sample MR study. Random-effects inverse variance weighted (IVW) was the main analysis method, and MR Egger, weighted median, simple mode, and weighted mode were used as supplementary methods. We examined heterogeneity and horizontal pleiotropy, and examined whether the analysis results were influenced by a single SNP. We applied radial variants of the IVW and MR-Egger model for the improved visualization of the causal estimate. We further examined the causal relationship between AS and gut microbiota, and the robustness of the analysis results. Finally, we performed maximum likelihood, penalized weighted median, and IVW (fixed effects) to further identify the potential causal association. Results: The random-effects IVW results showed that Bacteroides (p = 0.965, OR 95% confidence interval [CI] = 0.990 [0.621–1.579]), Streptococcus (p = 0.591, OR 95% CI = 1.120 [0.741–1.692]), Proteobacteria (p = 0.522, OR 95% CI = 1.160 [0.737–1.826]), and Lachnospiraceae (p = 0.717, OR 95% CI = 1.073 [0.732–1.574]) have no genetic causal relationship with AS. There was no heterogeneity, horizontal pleiotropy or outliers, and results were normally distributed. The MR analysis results were not driven by a single SNP. Conclusion: This study showed that Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae, four common gut microbiotas associated with AS, had no causal relationship with AS at the genetic level. This study makes a positive contribution to the genetics of AS, but the insufficient number of gut microbiota included is a limitation.
Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps. Cite this article: Bone Joint Res 2022;11(7):426–438.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.