During the healing and repair of bone defects, uncontrolled inflammatory responses can compromise bone regeneration. Biomaterials with anti-inflammatory activity are favorable for bone tissue regeneration processes. In this work, multifunctional Zn-containing mesoporous bioactive glass nanoparticles (Zn-MBGs) exhibiting favorable osteogenic and anti-inflammatory activities were produced employing a sol-gel method. Zn-MBGs exhibited a mesoporous spherical shape and nanoscale particle size (100 ± 20 nm). They were degradable in cell culture medium, and could release Si, Ca, and Zn in a sustained manner. Zn-MBGs also exhibited a concentration-dependent cellular response. The extract of Zn-MBGs obtained by incubation at 0.1 mg/mL (in culture medium) for 24 h could enhance in vitro mineralization, alkaline phosphatase activity, the expression of osteogenesis-related genes, and the production of intracellular protein osteocalcin of rat bone marrow stromal cells (BMSCs). Moreover, the extract of Zn-MBGs at 0.1 mg/mL could significantly downregulate the expression of inflammatory genes and the production of inducible nitric oxide in RAW 264.7 cells, particularly under stimulation of inflammatory signals interferon-γ (IFN-γ) and lipopolysaccharide (LPS). Zn-MBGs also inhibited the pro-inflammatory M1 polarization of RAW264.7 cells induced by LPS and IFN-γ. In summary, we successfully synthesized Zn-MBGs with concentration-dependent osteogenic and anti-inflammatory activities. Zn-MBGs show their great potential in immunomodulation strategies for bone regeneration, representing a multifunctional biomaterial that can be applied to regenerate bone defects under inflammatory conditions.
An early and sustained immune response can lead to chronic inflammation after the implant is placed in the body. The implantable materials with immunomodulatory effects can reduce the body’s immune response and promote the formation of ideal osseointegration between the implants and bone tissue. In this study, zinc-coated titanium micro-arc oxide coating was prepared on titanium surface by micro-arc oxidation. The physical properties, anti-inflammation, and osteogenesis of the material were evaluated. We have physically characterized the surface structure of the coatings by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM) and detected the release of Zn 2+ from the coating surface by inductively coupled optical plasma emission spectrometry (ICP-OES). The BMSCs were inoculated on the surface of the coating, and the biocompatibility of the coating was evaluated by CCK-8 analysis and living and dead cell staining. The osteogenic effect of the layer on BMSCs was evaluated by alkaline phosphatase (ALP) assays, osteocalcin (OCN) immunofluorescence, and quantitative polymerase chain reaction (q-PCR). The survival status of RAW264.7 on the coating surface and the mRNA expression of the associated proinflammatory markers, tumor necrosis factor-α (TNF-α), cluster of differentiation 86 (CD86), and inducible nitric oxide (INOS) were detected by CCK-8 analysis and q-PCR. In parallel, the cell counting kit-8 (CCK-8) analysis and q-PCR screened and evaluated the effective concentration of Zn 2+ anti-inflammatory in vitro. The results show that the coating has good physical characterization, and Zn is uniformly bound to the surface of titanium and shows stable release and good biocompatibility to BMSCs, downregulating the expression of inflammation-related genes promoting the bone formation of BMSCs. We have successfully prepared zinc-coated micro-arc titanium oxide coating on the titanium surface, which has good osteogenesis and great anti-inflammatory potential and provides a new way for osseointegration in the implant.
Introduction The nanostructural modification of the oral implant surface can effectively mimic the morphology of natural bone tissue, allowing osteoblasts to achieve both proliferation and differentiation capabilities at the bone interface of the dental implant. To improve the osteoinductive activity on the surface of titanium implants for rapid osseointegration, we prepared a novel composite coating (MAO-PDA-NC) by micro-arc oxidation technique and immersion method and evaluated the proliferation, adhesion, and osteogenic differentiation of osteoblasts on this coating. Methods The coatings were prepared by micro-arc oxidation (MAO) technique and immersion method, and characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) for different coatings; the loading of PDA was examined using Fourier transform infrared spectroscopy (FTIR); the ion release capacity of the coatings was determined by inductively coupled plasma emission spectrometry (ICP-OES); the interfacial bonding of the coatings was examined using nanoscratch experiment strength. The cytotoxicity of the coating was examined by live/dead staining kit; cell proliferation viability was examined by CCK-8 kit; adhesion and osteogenic effect of the coating were examined by immunofluorescence staining and RT-PCR; osteogenic differentiation was examined by alkaline phosphatase staining. Results The surface morphology of titanium implants was modified by micro-arc oxidation technology, and a new MAO-PDA-NC composite coating was successfully prepared. The results showed that the MAO-PDA-NC coating not only optimized the physical and chemical properties of the titanium implant surface but also significantly stimulated the biological properties of osteoblast adhesion, proliferation, and osteogenic differentiation on the coating surface. Conclusion These results show that MAO-PDA-NC composite coating can significantly improve the surface properties of titanium implants and achieve a stable bond between implant and bone tissue, thus accelerating early osseointegration.
With the development of implant applications, osseointegration has become a criterion for implant success. A good blood supply is essential for successful osseointegration. To improve the pro-angiogenic ability of the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.