The Mongolian plateau is a hotspot of global desertification because it is heavily affected by climate change, and has a large diversity of vegetation cover across various regions and seasons. Within this arid region, it is difficult to distinguish desertified land from other land cover types using low-quality vegetation information. To address this, we analyze both the effects and the applicability of different feature space models for the extraction of desertification information with the goal of finding appropriate approaches to extract desertification data on the Mongolian plateau. First, we used Landsat 8 remote sensing images to invert NDVI (normalized difference vegetation index), MSAVI (modified soil adjusted vegetation index), TGSI (topsoil grain size index), and albedo (land surface albedo) data. Then, we constructed the feature space models of Albedo-NDVI, Albedo-MSAVI, and Albedo-TGSI, and compared their extraction accuracies. Our results show that the overall classification accuracies of the three models were 84.53%, 85.60%, and 88.27%, respectively, indicating that the three feature space models are feasible for extracting information relating to desertification on the Mongolian plateau. Further analysis indicates that the Albedo-NDVI model is suitable for areas with a high vegetation cover or a high forest ratio, whilst the Albedo-MSAVI model is suitable for areas with relatively low vegetation cover, and the Albedo-TGSI model is suitable for areas with extremely low vegetation cover, including the widely distributed Gobi Desert and other barren areas. This study provides a technical selection reference for the investigation of desertification of different zones on the Mongolian plateau.
Highlights A map of land degradation and restoration with 30 m resolution in Mongolia was obtained for the first time. For the past 25 years, the trend of land change in Mongolia was dominated by land degradation. Land degradation is accompanied by ongoing restoration of some land areas, and the capacity for land restoration is gradually improving. The central regions of Mongolia are the area with the most significant land degradation, and the combined effects from natural and socioeconomic factors are the main driving forces. The northwestern and northeastern parts of Mongolia is the most significant land restoration area, and owns relatively sufficient water resources for improving land restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.