Shape‐morphing capabilities of metamaterials can be expanded by developing approaches that enable the integration of different types of cellular structures. Herein, a rational material design process is presented that fits together auxetic (anti‐tetrachiral) and non‐auxetic (the novel nodal honeycomb) lattice structures with a shared grid of nodes to obtain desired values of Poisson's ratios and Young's moduli. Through this scheme, deformation properties can be easily set piece by piece and 3D printed in useful combinations. For example, such nodally integrated tubular lattice structures undergo worm‐like peristalsis or snake‐like undulations that result in faster speeds than the monophasic counterpart in narrow channels and in wider channels, respectively. In a certain scenario, the worm‐like hybrid metamaterial structure traverses between confined spaces that are otherwise impassable for the isotropic variant. These deformation mechanisms allow us to design shape‐morphing structures into customizable soft robot skins that have improved performance in confined spaces. The presented analytical material design approach can make metamaterials more accessible for applications not only in soft robotics but also in medical devices or consumer products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.