A printed circuit heat exchanger (PCHE) can offer superior performance in area concentration and heat transfer efficiency. A PCHE with a liquid lead–bismuth eutectic (LBE) and supercritical carbon dioxide as working media can use these materials as intermediate heat exchangers in lead–bismuth eutectic-cooled reactors to reduce facility size and improve economy. To ensure the reliability of a numerical simulation for a liquid LBE in PCHE channels, the flow and heat transfer characteristics of a liquid LBE were investigated in a single D-type channel. The existing turbulent Prandtl number (Prt) models and the shear‒stress transport (SST) k−ω model were evaluated first by using experimental liquid metal data. Then, a suitable Prt model was proposed for the numerical simulation of the liquid LBE. Finally, the flow and heat transfer characteristics of the liquid LBE were studied in D-type straight channels and D-type zigzag channels. The study presented the effects of flow velocity, wall heat flux, equivalent diameter and zigzag channel angle on the flow resistance and heat transfer characteristics. Meanwhile, a heat transfer correlation suitable for a D-type straight channel was also proposed. The research results in this paper lay a good foundation for the development of PCHEs with an LBE as the working fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.