BackgroundPregnancy exposure registries are the primary sources of information about the safety of maternal usage of medications during pregnancy. Such registries enroll pregnant women in a voluntary fashion early on in pregnancy and follow them until the end of pregnancy or longer to systematically collect information regarding specific pregnancy outcomes. Although the model of pregnancy registries has distinct advantages over other study designs, they are faced with numerous challenges and limitations such as low enrollment rate, high cost, and selection bias.ObjectiveThe primary objectives of this study were to systematically assess whether social media (Twitter) can be used to discover cohorts of pregnant women and to develop and deploy a natural language processing and machine learning pipeline for the automatic collection of cohort information. In addition, we also attempted to ascertain, in a preliminary fashion, what types of longitudinal information may potentially be mined from the collected cohort information.MethodsOur discovery of pregnant women relies on detecting pregnancy-indicating tweets (PITs), which are statements posted by pregnant women regarding their pregnancies. We used a set of 14 patterns to first detect potential PITs. We manually annotated a sample of 14,156 of the retrieved user posts to distinguish real PITs from false positives and trained a supervised classification system to detect real PITs. We optimized the classification system via cross validation, with features and settings targeted toward optimizing precision for the positive class. For users identified to be posting real PITs via automatic classification, our pipeline collected all their available past and future posts from which other information (eg, medication usage and fetal outcomes) may be mined.ResultsOur rule-based PIT detection approach retrieved over 200,000 posts over a period of 18 months. Manual annotation agreement for three annotators was very high at kappa (κ)=.79. On a blind test set, the implemented classifier obtained an overall F1 score of 0.84 (0.88 for the pregnancy class and 0.68 for the nonpregnancy class). Precision for the pregnancy class was 0.93, and recall was 0.84. Feature analysis showed that the combination of dense and sparse vectors for classification achieved optimal performance. Employing the trained classifier resulted in the identification of 71,954 users from the collected posts. Over 250 million posts were retrieved for these users, which provided a multitude of longitudinal information about them.ConclusionsSocial media sources such as Twitter can be used to identify large cohorts of pregnant women and to gather longitudinal information via automated processing of their postings. Considering the many drawbacks and limitations of pregnancy registries, social media mining may provide beneficial complementary information. Although the cohort sizes identified over social media are large, future research will have to assess the completeness of the information available through them.
Background: Although birth defects are the leading cause of infant mortality in the United States, methods for observing human pregnancies with birth defect outcomes are limited. Objective: The primary objectives of this study were (i) to assess whether rare health-related events—in this case, birth defects—are reported on social media, (ii) to design and deploy a natural language processing (NLP) approach for collecting such sparse data from social media, and (iii) to utilize the collected data to discover a cohort of women whose pregnancies with birth defect outcomes could be observed on social media for epidemiological analysis. Methods: To assess whether birth defects are mentioned on social media, we mined 432 million tweets posted by 112,647 users who were automatically detected via their public announcements of pregnancies on Twitter. To retrieve tweets that mention birth defects, we developed a rule-based, bootstrapping approach, which relies on a lexicon, lexical variants generated from the lexicon entries, regular expressions, post-processing, and manual analysis guided by distributional properties. To identify users whose pregnancies with birth defect outcomes could be observed for epidemiological analysis, inclusion criteria were (i) tweets indicating that the user’s child has a birth defect, and (ii) accessibility to the user’s tweets during pregnancy. We conducted a semi-automatic evaluation to estimate the recall of the tweet-collection approach, and performed a preliminary assessment of the prevalence of selected birth defects among the pregnancy cohort derived from Twitter. Results: We manually annotated 16,822 retrieved tweets, distinguishing tweets indicating that the user’s child has a birth defect (true positives) from tweets that merely mention birth defects (false positives). Inter-annotator agreement was substantial: κ = 0.79 (Cohen’s kappa). Analyzing the timelines of the 646 users whose tweets were true positives resulted in the discovery of 195 users that met the inclusion criteria. Congenital heart defects are the most common type of birth defect reported on Twitter, consistent with findings in the general population. Based on an evaluation of 4,169 tweets retrieved using alternative text mining methods, the recall of the tweet-collection approach was 0.95. Conclusions: Our contributions include (i) evidence that rare health-related events are indeed reported on Twitter, (ii) a generalizable, systematic NLP approach for collecting sparse tweets, (iii) a semi-automatic method to identify undetected tweets (false negatives), and (iv) a collection of publicly available tweets by pregnant users with birth defect outcomes, which could be used for future epidemiological analysis. In future work, the annotated tweets could be used to train machine learning algorithms to automatically identify users reporting birth defect outcomes, enabling the large-scale use of social media mining as a complementary method for such epidemiological research.
Background Prescription medication (PM) misuse/abuse has emerged as a national crisis in the United States, and social media has been suggested as a potential resource for performing active monitoring. However, automating a social media-based monitoring system is challenging—requiring advanced natural language processing (NLP) and machine learning methods. In this paper, we describe the development and evaluation of automatic text classification models for detecting self-reports of PM abuse from Twitter. Methods We experimented with state-of-the-art bi-directional transformer-based language models, which utilize tweet-level representations that enable transfer learning (e.g., BERT, RoBERTa, XLNet, AlBERT, and DistilBERT), proposed fusion-based approaches, and compared the developed models with several traditional machine learning, including deep learning, approaches. Using a public dataset, we evaluated the performances of the classifiers on their abilities to classify the non-majority “abuse/misuse” class. Results Our proposed fusion-based model performs significantly better than the best traditional model (F1-score [95% CI]: 0.67 [0.64–0.69] vs. 0.45 [0.42–0.48]). We illustrate, via experimentation using varying training set sizes, that the transformer-based models are more stable and require less annotated data compared to the other models. The significant improvements achieved by our best-performing classification model over past approaches makes it suitable for automated continuous monitoring of nonmedical PM use from Twitter. Conclusions BERT, BERT-like and fusion-based models outperform traditional machine learning and deep learning models, achieving substantial improvements over many years of past research on the topic of prescription medication misuse/abuse classification from social media, which had been shown to be a complex task due to the unique ways in which information about nonmedical use is presented. Several challenges associated with the lack of context and the nature of social media language need to be overcome to further improve BERT and BERT-like models. These experimental driven challenges are represented as potential future research directions.
The rapidly evolving COVID-19 pandemic presents challenges for actively monitoring its transmission. In this study, we extend a social media mining approach used in the US to automatically identify personal reports of COVID-19 on Twitter in England, UK. The findings indicate that natural language processing and machine learning framework could help provide an early indication of the chronological and geographical distribution of COVID-19 in England.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.