Efficient management and utilization of edge server memory buffers are crucial for improving the efficiency of concurrent editing in the concurrent editing application scenario of large-scale video in edge computing. In order to elevate the efficiency of concurrent editing and the satisfaction of service users under the constraint of limited memory buffer resources, the allocation of memory buffers of concurrent editing servers is transformed into the bin-packing problem, which is solved using an ant colony algorithm to achieve the least loaded utilization batch. Meanwhile, a new distributed online concurrent editing algorithm for video streams is designed for the conflict problem of large-scale video editing in an edge computing environment. It incorporates dual-buffer read-and-write technology to solve the difficult problem of concurrent inefficiency of editing and writing disks. The experimental results of the simulation show that the scheme not only achieves a good performance in the scheduling of concurrent editing but also implements the editing resource allocation function in an efficient and reasonable way. Compared with the benchmark traditional single-exclusive editing scheme, the proposed optimized scheme can simultaneously enhance editing efficiency and user satisfaction under the restriction of providing the same memory buffer computing resources. The proposed model has a wide application to video real-time processing application scenarios in edge computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.