Fe-Mn-Al-C steel, which is a potential lightweight material for automobiles, has a variety of microstructures and good mechanical properties. The effect of κ carbides on the mechanical properties and strain hardening rate of Fe-27Mn-10Al-1C (wt.%) low density steel was studied by short-time heat treatment to control the precipitation behavior of κ carbides. Quenched specimens have an excellent combination of strength and plasticity and continuous high strain hardening rate, which is due to the uniform distribution of κ carbides with an average size of 1.6 nm in an austenite matrix. The fracture mode of the sample changed from ductile fracture to cleavage fracture, which was because the aging treatment promoted the precipitation of B2 phases and κ carbides at grain boundaries. The size and volume fraction of nanoscale κ carbides in austenite grains increase with the increase of aging temperature, and the yield strength increases but the density of slip bands decreases, resulting in the gradual decrease of strain hardening rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.