This study examines the impact of chief executive officer (CEO) attributes on sustainable performance, environmental performance, and environmental reporting, which are motivated by institutionally driven environmental policies, regulations, and management in the context of Chinese listed firms. With the use of a comprehensive dataset of 2,854 Chinese listed firms over the 2010–2017 period (i.e., making over 16,000 individual firm‐year observations), our findings are fourfold. First, our overall findings reveal that CEOs with research background tend to engage more in activities that improve sustainable performance, environmental performance, and environmental reporting than do those without research background. Second, CEOs with financial expertise are positively linked with increased sustainable performance and environmental reporting. Third, CEOs with foreign exposure are more eager to engage in activities that enhance sustainable and environmental performance than do those without foreign exposure. Fourth, young CEOs tend to take actions that reduce both sustainable and environmental performance than do their older counterparts. We interpret our results within upper echelons theoretical perspective. The results are robust to alternative measures, potential endogeneities, and sample selection problems.
Lung adenocarcinoma (LUAD) is the main subtype of lung cancer. In this study, we found that RBP Mex3a was significantly upregulated in LUAD tissues and elevated Mex3a expression was associated with poor LUAD prognosis and metastasis. Furthermore, we demonstrated that Mex3a knockdown significantly inhibited LUAD cell migration and invasion in vitro and metastasis in nude mice. Transcriptome sequencing indicated that Mex3a affected gene expression linked to ECM-receptor interactions, including laminin subunit alpha 2(LAMA2). RNA immunoprecipitation (RIP) assay revealed Mex3a directly bound to LAMA2 mRNA and Mex3a increased the instability of LAMA2 mRNA in LUAD cells. Furthermore, we discovered that LAMA2 was surprisingly downregulated in LUAD and inhibited LUAD metastasis. LAMA2 knockdown partially reverse the decrease of cell migration and invasion caused by Mex3a knockdown. In addition, we found that both Mex3a and LAMA2 could influence PI3K-AKT pathway, which are downstream effectors of the ECM-receptor pathway. Moreover, the reduced activation of PI3K-AKT pathway in caused by Mex3a depletion was rescued by LAMA2 knockdown. In conclusion, we demonstrated that Mex3a downregulates LAMA2 expression to exert a prometastatic role in LUAD. Our study revealed the prognostic and prometastatic effects of Mex3a in LUAD, suggesting that Mex3a can serve as a prognostic biomarker and a target for metastatic therapy.
Seed germination plays important roles in the establishment of seedlings and their subsequent growth; however, seed germination is inhibited by salinity, and the inhibitory mechanism remains elusive. Our results indicate that NaCl treatment inhibits rice seed germination by decreasing the contents of bioactive gibberellins (GAs), such as GA1 and GA4, and that this inhibition can be rescued by exogenous bioactive GA application. To explore the mechanism of bioactive GA deficiency, the effect of NaCl on GA metabolic gene expression was investigated, revealing that expression of both GA biosynthetic genes and GA-inactivated genes was up-regulated by NaCl treatment. These results suggest that NaCl-induced bioactive GA deficiency is caused by up-regulated expression of GA-inactivated genes, and the up-regulated expression of GA biosynthetic genes might be a consequence of negative feedback regulation of the bioactive GA deficiency. Moreover, we provide evidence that NaCl-induced bioactive GA deficiency inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression. Additionally, exogenous bioactive GA rescues NaCl-inhibited seed germination by enhancing α-amylase activity. Thus, NaCl treatment reduces bioactive GA content through promotion of bioactive GA inactivation, which in turn inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression.
High temperature has adverse effects on rice yield and quality. The different influences of night high temperature (NHT) and day high temperature (DHT) on rice quality and seed protein accumulation profiles during grain filling in indica rice '9311' were studied in this research. The treatment temperatures of the control, NHT, and DHT were 28°C/20°C, 27°C/35°C, and 35°C/27°C, respectively, and all the treatments were maintained for 20 days. The result of rice quality analysis indicated that compared with DHT, NHT exerted less effect on head rice rate and chalkiness, whereas greater effect on grain weight. Moreover, the dynamic accumulation change profiles of 61 protein spots, differentially accumulated and successfully identified under NHT and DHT conditions, were performed by proteomic approach. The results also showed that the different suppressed extent of accumulation amount of cyPPDKB might result in different grain chalkiness between NHT and DHT. Most identified isoforms of proteins, such as PPDK and pullulanase, displayed different accumulation change patterns between NHT and DHT. In addition, compared with DHT, NHT resulted in the unique accumulation patterns of stress and defense proteins. Taken together, the mechanisms of seed protein accumulation profiles induced by NHT and DHT during grain filling should be different in rice, and the potential molecular basis is discussed in this study.
During the heat treatment of proteinaceous food, heterocyclic aromatic amines (HAAs), a kind of strong mutagens/carcinogens are formed. HAAs can be classified into two major groups based on the heating temperature, which are thermic HAAs generally formed in 150 to 300 °C and pyrolytic HAAs produced above 300 °C. This review focuses on the formation mechanisms of HAAs and identifies different mechanisms of the formation of HAAs in foodstuffs. Moreover, an overview of the available extraction, purification methods, and instrumental analytical methods in the last two decades is shown to determine the HAAs in various foodstuffs. Finally, based on the factors that affect the formation of HAAs in heat‐processed foodstuffs, such as the cooking method, food type, the recipe, and the content of substances with enhancing or inhibiting effects on the formation of HAAs, this review also highlights the most promising strategies for mitigating HAAs, which include adjusting cooking methods or process conditions, adding natural product extracts, antioxidants or other compounds, or reasonable selection of types of foodstuff. The review intends to provide a broad but comprehensive understanding of the formation, extraction, purification, analytical methods, and possible mitigation strategies for isolated and identified HAAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.