To address the diverse needs of enterprise users and the cold-start issue of recommendation system, this paper proposes a quality-service demand classification method—1D-CNN-CrossEntorpyLoss, based on cross-entropy loss and one-dimensional convolutional neural network (1D-CNN) with the comprehensive enterprise quality portrait labels. The main idea of 1D-CNN-CrossEntorpyLoss is to use cross-entropy to minimize the loss of 1D-CNN model and enhance the performance of the enterprise quality-service demand classification. The transaction data of the enterprise quality-service platform are selected as the data source. Finally, the performance of 1D-CNN-CrossEntorpyLoss is compared with XGBoost, SVM, and logistic regression models. From the experimental results, it can be found that 1D-CNN-CrossEntorpyLoss has the best classification results with an accuracy of 72.44%. In addition, compared to the results without the enterprise-quality portrait, the enterprise-quality portrait improves the accuracy and recall of 1D-CNN-CrossEntorpyLoss model. It is also verified that the enterprise-quality portrait can further improve the classification ability of enterprise quality-service demand, and 1D-CNN-CrossEntorpyLoss is better than other classification methods, which can improve the precision service of the comprehensive quality service platform for MSMEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.