Paraquat (PQ), as a highly effective and nonselective herbicide, induces cell apoptosis through generation of superoxide anions which forms reactive oxygen species (ROS). Mitochondria, as regulators for cellular redox signaling, have been proved to play an important role in PQ-induced cell apoptosis. This study aimed to evaluate whether and how mitochondrial fission interacts with oxidative stress in PQ-induced apoptosis in mouse alveolar type II (AT-II) cells. Firstly, we demonstrated that PQ promoted apoptosis and release of cytochrome-c (Cyt-c). Furthermore, we showed that PQ broke down mitochondrial network, enhanced the expression of fission-related proteins, increased Drp1 mitochondrial translocation while decreased the expression of fusion-related proteins in AT-II cells. Besides, inhibiting mitochondrial fission using mdivi-1, a selective inhibitor of Drp1, markedly attenuated PQ-induced apoptosis, release of Cyt-c and the generation of ROS. These results indicate that mitochondrial fission involves in PQ-induced apoptosis. Further study demonstrated that antioxidant ascorbic acid inhibited Drp1 mitochondrial translocation, mitochondrial fission and attenuated PQ-induced apoptosis. Overall, our findings suggest that mitochondrial fission interplays with ROS in PQ-induced apoptosis in mouse AT-II cells and mitochondrial fission could serve as a potential therapeutic target in PQ poisoning.
Background and aims Relevant soil properties and nutrient distributions influencing crop root growth might be different under no-till (NT) and mouldboard plough (MP) management. The possible different root systems within different managements might have key impact on crop nutrient uptake and consequently crop production. Our objective was to assess the long-term combined effects of tillage and phosphorus (P) fertilization on corn (Zea mays L.) root distribution and morphology. Methods Corn root and soil samples were collected during the silking stage at five depths (0-5, 5-10, 10-20, 20-30 and 30-40 cm) and three horizontal distances perpendicular to the corn row (5, 15 and 25 cm) under MP and NT with three P fertilizations (0, 17.5, and 35 kg P ha −1 ) for a long-term (22 years) experiment in eastern Canada. Root morphology and soil properties were determined. Results NT practice decreased corn root biomass by −26 % compared to MP, mainly by decreasing the primary and secondary roots. Additionally, corn roots in NT tend to be more expansive on the surface layer with higher root length and surface densities for the depth of 0-5 cm at two sampling distances of 15 and 25 cm. The 35 kg P ha −1 rate increased the root biomass by 26 and 41 % compared to the 0 and 17.5 kg P ha −1 rates. Conclusions No-tillage practice and low rates of P fertilization reduce corn roots. This is probably caused by the weed competition in NT and the continued downward P status with low P rates over 22 years.
Abbreviations
MP Mouldboard plough NTNo-till 0P, 0.5P and 1P P fertilization rates of 0, 17.5 and 35 kg P ha −1 every two years RMD Root mass density RSD Root surface density RLD Root length density Plant Soil
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.