The brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a major pest of rice in Asia, is able to successfully puncture sieve tubes in rice with its piercing stylet and then to ingest phloem sap. How BPH manages to continuously feed on rice remains unclear. Here, we cloned the gene NlSEF1, which is highly expressed in the salivary glands of BPH. The NlSEF1 protein has EF-hand Ca2+-binding activity and can be secreted into rice plants when BPH feed. Infestation of rice by BPH nymphs whose NlSEF1 was knocked down elicited higher levels of Ca2+ and H2O2 but not jasmonic acid, jasmonoyl-isoleucine (JA-Ile) and SA in rice than did infestation by control nymphs; Consistently, wounding plus the recombination protein NlSEF1 suppressed the production of H2O2 in rice. Bioassays revealed that NlSEF1-knockdown BPH nymphs had a higher mortality rate and lower feeding capacity on rice than control nymphs. These results indicate that the salivary protein in BPH, NlSEF1, functions as an effector and plays important roles in interactions between BPH and rice by mediating the plant’s defense responses.
ORCID IDs: 0000-0002-5714-7586 (J.Z.); 0000-0002-3262-6134 (Y.L.).The brown planthopper (BPH) Nilaparvata lugens is one of the most destructive insect pests on rice (Oryza sativa) in Asia. After landing on plants, BPH rapidly accesses plant phloem and sucks the phloem sap through unknown mechanisms. We discovered a salivary endo-b-1,4-glucanase (NlEG1) that has endoglucanase activity with a maximal activity at pH 6 at 37°C and is secreted into rice plants by BPH. NlEG1 is highly expressed in the salivary glands and midgut. Silencing NlEG1 decreases the capacity of BPH to reach the phloem and reduces its food intake, mass, survival, and fecundity on rice plants. By contrast, NlEG1 silencing had only a small effect on the survival rate of BPH raised on artificial diet. Moreover, NlEG1 secreted by BPH did not elicit the production of the defense-related signal molecules salicylic acid, jasmonic acid, and jasmonoyl-isoleucine in rice, although wounding plus the application of the recombination protein NlEG1 did slightly enhance the levels of jasmonic acid and jasmonoyl-isoleucine in plants compared with the corresponding controls. These data suggest that NlEG1 enables the BPH's stylet to reach the phloem by degrading celluloses in plant cell walls, thereby functioning as an effector that overcomes the plant cell wall defense in rice.
BackgroundThe brown planthopper (BPH), Nilaparvata lugens (Stål), a destructive rice pest in Asia, can quickly overcome rice resistance by evolving new virulent populations. Herbivore saliva plays an important role in plant–herbivore interactions, including in plant defense and herbivore virulence. However, thus far little is known about BPH saliva at the molecular level, especially its role in virulence and BPH–rice interaction.Methodology/Principal FindingsUsing cDNA amplification in combination with Illumina short-read sequencing technology, we sequenced the salivary-gland transcriptomes of two BPH populations with different virulence; the populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 37,666 and 38,451 unigenes were generated from the salivary glands of these populations, respectively. When combined, a total of 43,312 unigenes were obtained, about 18 times more than the number of expressed sequence tags previously identified from these glands. Gene ontology annotations and KEGG orthology classifications indicated that genes related to metabolism, binding and transport were significantly active in the salivary glands. A total of 352 genes were predicted to encode secretory proteins, and some might play important roles in BPH feeding and BPH–rice interactions. Comparative analysis of the transcriptomes of the two populations revealed that the genes related to ‘metabolism,’ ‘digestion and absorption,’ and ‘salivary secretion’ might be associated with virulence. Moreover, 67 genes encoding putative secreted proteins were differentially expressed between the two populations, suggesting these genes may contribute to the change in virulence.Conclusions/SignificanceThis study was the first to compare the salivary-gland transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our data provide a rich molecular resource for future functional studies on salivary glands and will be useful for elucidating the molecular mechanisms underlying BPH feeding and virulence differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.