Rapid emergence of multidrug resistant (MDR) "superbugs" poses a severe threat to global health. Notably, undeveloped diagnosis and concomitant treatment failure remain highly challenging. Herein, we report a sonotheranostic strategy to achieve bacteria-specific labeling and visualized sonodynamic therapy (SDT). Using maltohexaose-decorated cholesterol and bacteria-responsive lipid compositions, a smart nanoliposomes platform (MLP18) was developed for precise delivery of purpurin 18, a potent sonosensitizer proved in this study. Taking advantage of the bacteria-specific maltodextrin transport pathway, the prepared MLP18 can specifically target the bacterial infection site and accurately distinguish the foci from sterile inflammation or cancer with a highly selective fluorescence/photoacoustic signal on the bacteria-infected site of mice. Moreover, the bacteria-responsive feature of MLP18 activated an efficient release and internalization of high concentration sonosensitizer into bacterial cells, resulting in effective sonodynamic elimination of MDR bacteria. In situ MRI monitoring visualized such potent sonodynamic activity and indicated that MLP18-mediated SDT could successfully eradicate inflammation and abscess from mice with bacterial myositis. In view of the above advantages, the developed nanoliposomes may serve as a promising sonotheranostic platform against MDR bacteria in the areas of healthcare.
Many photoresponsive dyes have been utilized as imaging and photodynamic/photothermal therapy agents. Indocyanine green (ICG) is the only near-infrared region (NIR) organic dye for clinical applications approved by the United States Food and Drug Administration; however, the clinical application of ICG is limited by its poor aqueous solubility, low cancer specificity, and low sensitivity in cancer theranostics. To overcome these issues, a multifunctional nanoplatform based on hyaluronic acid (HA) and ICG-engineered metal-organic framework MIL-100(Fe) nanoparticles (MOF@HA@ICG NPs) was successfully developed for imaging-guided, anticancer photothermal therapy (PTT). The synthesized NPs showed a high loading content of ICG (40%), strong NIR absorbance, and photostability. The in vitro and in vivo imaging showed that the MOF@HA@ICG NPs exhibited greater cellular uptake in CD44-positive MCF-7 cells and enhanced tumor accumulation in xenograft tumors due to their targeting capability, compared to MOF@ICG NPs (non-HA-targeted) and free ICG. The in vitro photothermal toxicity and in vivo PTT treatments demonstrated that MOF@HA@ICG NPs could effectively inhibit the growth of MCF-7 cells/xenograft tumors. These results suggest that MOF@HA@ICG NPs could be served as a new promising theranostic nanoplatform for improved anticancer PTT through cancer-specific and image-guided drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.