During the summers of 2009 and 2013, seawater pH and concentrations of dissolved oxygen, inorganic carbon, and nutrients were measured off the Changjiang estuary in the East China Sea. The 2009 cruise captured the effects of Typhoon Morakot; the 2013 cruise sampled more typical conditions (no typhoon). Data from both years indicate a close correlation between high primary productivity in surface waters and hypoxia in bottom waters. Based on these observations, we developed a conceptual model to guide an exploration of processes contributing to the formation of summertime bottom hypoxia. A mixing-model analysis of the 2009 data identified a surface diatom bloom as the major (70-80%) source of the organic carbon that decomposed and ultimately led to bottom water hypoxia. Within the Changjiang River plume, depth-integrated net biological production in the water column was 1.8 g C m 22 d 21 , indicating strong autotrophic production, which in turn led to a high respiration rate of 1.2 g C m 22 d 21 in the bottom water. During both cruises, strong surface-to-bottom physical and metabolic coupling was evident. In 2009, storm-driven inputs of nutrients from elevated river discharge and strong vertical mixing helped to fuel the rapid development of a surface diatom bloom. Afterwards, stratified conditions re-established, newly formed labile organic matter sank, and bottom water oxygen was quickly consumed to an extent that hypoxia and acidification developed. To our knowledge, the observed rate of hypoxia and acidification development (within 6 d) is the fastest yet reported for the Changjiang River plume.Oxygen-minimum zones in open-ocean waters and hypoxic zones in coastal waters have received increased attention in recent research related to changing biogeochemical and climate conditions. Oceanic oxygen-minimum zones occur naturally and permanently at depths of 200-1000 m in the open ocean (Wyrtki 1962). In contrast, coastal hypoxia (dissolved oxygen [DO] <63 lmol L 21 ) appears seasonally and is believed to be largely associated with anthropogenic eutrophication. Where nutrient inputs to coastal waters result in excess primary production, depletion of oxygen in bottom waters may follow (Diaz and Rosenberg 2008; Bianchi et al.
A large part of the Pacific Arctic basin experiences ice-free conditions in summer as a result of sea ice cover steadily decreasing over the last decades. To evaluate the impact of sea ice retreat on the marine ecosystem, phytoplankton in situ observations were acquired over the Chukchi shelf and the Canadian basin in 2008, a year of high melting. Pigment analyses and taxonomy enumerations were used to characterise the distribution of main phytoplanktonic groups. Marked spatial variability of the phytoplankton distribution was observed in summer 2008. Comparison of eight phytoplankton functional groups and 3 size-classes (pico-, nano- and micro-phytoplankton) also showed significant differences in abundance, biomass and distribution between summer of low ice cover (2008) and heavy ice summer (1994). Environmental parameters such as freshening, stratification, light and nutrient availability are discussed as possible causes to explain the observed differences in phytoplankton community structure between 1994 and 2008
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.