The effects of Fe stoichiometry on hydrogen embrittlement and hydrogen diffusion in ordered Ni3Fe intermetallics were investigated. The experimental results show that the ordered Ni3Fe alloy with the normal stoichiometry has the lowest mechanical property, the highest susceptibility to hydrogen, and the highest ability of catalytic reaction. The mechanical properties, the susceptibility to hydrogen embrittlement, and the amount of adsorbed hydrogen of the ordered Ni3Fe alloy are dependent of degree of order of the alloy. The apparent hydrogen diffusion coefficient of the ordered Ni3Fe alloy is independent on degree of order of the alloy but depends on Fe stoichiometry. The activation energy of hydrogen diffusion decreased linearly with Fe stoichiometry for the ordered Ni3Fe alloy.
Niobium silicide-based composites, in the application of gas turbine blades, promise significant efficiency improvements compared to current Ni-based alloys. The higher temperature capability would allow the engine to run at a higher temperature than that of current alloys, increasing engine efficiency. Nb-Si based composites possess a lower density, due to the presence of ceramic phases such as Nb5Si3 and/or Nb3Si. This would reduce the weight of the rotating blades. However, improvements in certain properties, such as room temperature toughness and oxidation resistance are needed.
This study focuses on the manufacturability aspect of the powder feeding laser additive manufacturing (LAM) process to engineering Nb-Si based alloy samples. LAM has the advantage of forming near-net shapes without the use of expensive cores and moulds for the reactive Nb-Si melt. Fine microstructure and even chemical composition distribution with reduced macro-segregation are obtained. With the use of power feeding system, new Nb-Si based alloys are LAMed with varying atomic composition. Microstructures of the LAMed alloys will be presented, and the relationship between the microstructure and the alloy chemistry will be reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.