Generation of induced pluripotent stem (iPS) cells holds a great promise for regenerative medicine and other aspects of clinical applications. Many types of cells have been successfully reprogrammed into iPS cells in the mouse system; however, reprogramming human cells have been more difficult. To date, human dermal fibroblasts are the most accessible and feasible cell source for iPS generation. Dental tissues derived from ectomesenchyme harbor mesenchymal-like stem/progenitor cells and some of the tissues have been treated as biomedical wastes, for example, exfoliated primary teeth and extracted third molars. We asked whether stem/progenitor cells from discarded dental tissues can be reprogrammed into iPS cells. The 4 factors Lin28/Nanog/Oct4/Sox2 or c-Myc/Klf4/Oct4/Sox2 carried by viral vectors were used to reprogram 3 different dental stem/progenitor cells: stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), and dental pulp stem cells (DPSCs). We showed that all 3 can be reprogrammed into iPS cells and appeared to be at a higher rate than fibroblasts. They exhibited a morphology indistinguishable from human embryonic stem (hES) cells in cultures and expressed hES cell markers SSEA-4, TRA-1-60, TRA-1-80, TRA-2-49, Nanog, Oct4, and Sox2. They formed embryoid bodies in vitro and teratomas in vivo containing tissues of all 3 germ layers. We conclude that cells of ectomesenchymal origin serve as an excellent alternative source for generating iPS cells.
Non‐alcohol fatty liver disease (NAFLD) is a common disease which causes serious liver damage. Geniposide (GEN), a kind of iridoid glycoside extracted from Gardenia jasminoides fruit, has many biological effects, such as resistance to cell damage and anti‐neurodegenerative disorder. Lipid accumulation was obvious in tyloxapol‐induced liver and oil acid (OA) with palmitic acid (PA)‐induced HepG2 cells compared with the control groups while GEN improved the increasing conditions. GEN significantly lessened the total cholesterol (TC), the triglyceride (TG), low‐density lipoprotein (LDL), very low‐density lipoprotein (VLDL), myeloperoxidase (MPO), reactive oxygen species (ROS) and increased high‐density lipoprotein (HDL), superoxide dismutase (SOD) to response the oxidative stress via activating nuclear factor erythroid‐2–related factor 2 (Nrf2), haeme oxygenase (HO)‐1 and peroxisome proliferator‐activated receptor (PPAR)α which may influence the phosphorylation of adenosine 5’‐monophosphate–activated protein kinase (AMPK) signalling pathway in mice and cells. Additionally, GEN evidently decreased the contents of sterol regulatory element‐binding proteins (SREBP)‐1c, phosphorylation (P)‐mechanistic target of rapamycin complex (mTORC), P‐S6K, P‐S6 and high mobility group protein (HMGB) 1 via inhibiting the expression of phosphoinositide 3‐kinase (PI3K), and these were totally abrogated in Nrf2−/− mice. Our study firstly proved the protective effect of GEN on lipid accumulation via enhancing the ability of antioxidative stress and anti‐inflammation which were mostly depend on up‐regulating the protein expression of Nrf2/HO‐1 and AMPK signalling pathways, thereby suppressed the phosphorylation of mTORC and its related protein.
Amyloid-β (Aβ) associates with extracellular vesicles termed exosomes. It is not clear whether and how exosomes modulate Aβ neurotoxicity in Alzheimer's disease (AD). We show here that brain tissue and serum from the transgenic mouse model of familial AD (5xFAD) and serum from AD patients contains ceramide-enriched and astrocyte-derived exosomes (termed astrosomes) that are associated with Aβ. In Neuro-2a cells, primary cultured neurons, and human induced pluripotent stem cell-derived neurons, Aβ-associated astrosomes from 5xFAD mice and AD patient serum were specifically transported to mitochondria, induced mitochondrial clustering, and upregulated the fission protein Drp-1 at a concentration corresponding to 5 femtomoles Aβ/L of medium. Aβassociated astrosomes, but not wild type or control human serum exosomes, mediated binding of Aβ to voltagedependent anion channel 1 (VDAC1) and subsequently, activated caspases. Aβ-associated astrosomes induced neurite fragmentation and neuronal cell death, suggesting that association with astrosomes substantially enhances Aβ neurotoxicity in AD and may comprise a novel target for therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.