Polyzwitterionic materials, which have both cationic and anionic groups in the polymeric repeat unit, show excellent anti-biofouling properties and are drawing more attention in the biomedical field. In this study, we have successfully synthesized novel single network hydrogels and double network (DN) hydrogels from the zwitterionic monomer, N-(carboxymethyl)-N, N-dimethyl-2-(methacryloyloxy) ethanaminium, inner salt (CDME). The polyCDME (PCDME) single network hydrogel behaves like a hydrophilic neutral hydrogel and its properties are not sensitive to temperature, pH, or ionic strength over a wide range. DN hydrogels using the poly(2-acrylamido-2-methylpropanesulfonic) (PAMPS) as the first network and PCDME as the second network, having a Young's modulus of 0.2~0.9 MPa, possess excellent mechanical strength (fracture stress: 1.2~1.4 MPa, fracture strain: 2.2~6.0 mm/mm) and toughness (work of extension at fracture: 0.9-2.4 MJ/m 3 ) depending on the composition ratio of PCDME to PAMPS. The strength and toughness of the optimized PAMPS/PCDME DN is comparable to the normal PAMPS/PAAm DN hydrogels that use poly(acrylamide)(PAAm) as the second network. By macrophage adhesion test, both the PCDME hydrogels and the PAMPS/PCDME DN hydrogels have shown excellent anti-biofouling properties. These results demonstrate that the PCDME-based DN hydrogels have a high potential as a novel soft and wet biomaterial.
Ultrathin double-network hydrogels, which have super-high toughness under micro-scale thickness (elastic elongation epsilon(b) > 1000%, tensile strength sigma(b) > 2 MPa and tearing energy G approximately 600 J m(-2)), and solvent-triggered fast and high isometric stress generation, were synthesized by coupling the salt-controlled swelling process and polymer chain pre-reinforced technique.
The high water content of hydrogels makes them important as synthetic biomaterials, and tuning the mechanical properties of hydrogels to match those of natural tissues without changing chemistry is usually difficult. In this study, we have developed a series of hydrogels with varied stiffness, strength and toughness based on a combination of poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS), a strong acidic polyelectrolyte, and poly-N-polyzwitterion with weak acidic moiety. We demonstrate that modifying the true molar ratio, R, of PCDME to PAMPS results in four unique categories of hydrogels with different swelling ratio and Young's modulus. When R < 1, a negatively charged polyelectrolyte gel (PE) is formed; when 1 < R < 3, a tough and viscoelastic polyelectrolyte complex gel (PEC) is formed; when 3 < R < 6.5, a conventional, elastic interpenetrating network gel (IPN) is formed; and when R > 6.5 a tough and stiff double-network gel (DN) is formed. Both the PEC and DN gels exhibit high toughness and fracture stress, up to 1.8 MPa and 1.5 MPa, respectively. Importantly, the PEC gels exhibit strong recovery properties along with high toughness, distinguishing them from DN gels. Without requiring a change in chemistry, we can tune the mechanical response of hydrogels over a wide spectrum, making this a useful system of soft and hydrated biomaterials.
Gelatin nanofibers can be used in the development of a biomimicking artificial extra cellular matrix(ECM) for tissue engineering, wound healing dressings and drug release. However, gelatin nanofibers are water soluble and have weak mechanical strength. Two different cross-linking methods for preparing gelatin nanofibers were used to render gelatin nanofibres insoluble: 1) UV radiation for modified gelatin nanofibers by trans-cinnamic acid; and 2) electrospun gelatin nanofibers cross-linked with genipin. A photo cross-linking method was used to examine the effects of ultraviolet (UV) radiation on the modified gelatin nanofiber scaffolds. A modified gelatin solution containing gelatin, trans-cinnamic acid and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) at a molar ratio of 1:3:30 was prepared. The results showed that the degree of modification in gelatin molecules was 14.5 groups per mol. The modified gelatin was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol at 20%(w/v) and nanofibrous meshes were obtained by electrospinning. After drying, the nanofibrous meshes were exposed to a commercial germicide UV (=254 nm) lamp for different times. The swelling ratio of each nanofibrous mesh was decreased from 195% to 105% with increasing UV exposure time from 1 h to 10 h. A cross-linking agent method was used to evaluate the effects of the cross-linked gelatin nanofiber scaffolds with genipin. The swelling ratios decreased from 725% to 445% with increasing genipin solution concentration from 0.5%(w/ v) to 2%(w/v). The results of the cell culture suggest that cross-linking gelatin nanofibers with 0.5%(w/v) genipin improves the level of cell proliferation with increasing cell culture time from 1 day to 5 days. Moreover, the cell viability of each nanofiber increased with increasing cell culture time. However, the cell viability decreased with increasing genipin solution concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.