OA is now well accepted as a low-grade inflammatory disease affecting the whole joint. In addition to mechanical loading, inflammation (particularly synovitis), contributes significantly to OA. Synovial macrophages act as immune cells and are of critical importance in the symptomology and structural progression of OA. Activated macrophages are regulated by mTOR, NF-kB, JNK, PI3K/Akt and other signaling pathways, and are polarized into either M1 or M2 subtypes in OA synovial tissues, synovial fluid, and peripheral blood. The activation state and the M1/M2 ratio is highly associated with OA severity. Aside from autocrine interactions, paracrine interactions between macrophages and chondrocytes play a vital role in the initiation and development of OA by secreting inflammatory cytokines, growth factors, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs), which lead to subsequent cartilage degradation and destruction. Treatments targeting synovial macrophages relieve pain, and protect from synovitis, cartilage damage, and osteophyte formation during OA development. Macrophage reprogramming of transformation from the M1 to M2 subtype, more than a decrease in the quantity of activated macrophages, appears to be an effective treatment option for OA. This review provides a broad understanding of the contributions of polarized macrophages to joint health and disease. Multifunctional agents with immunomodulatory effects on macrophage reprogramming can skew the inflammatory microenvironment towards a pro-chondrogenic atmosphere, and are thus, potential therapeutic options for the treatment of OA and other immune diseases.
Animal models have indicated that intestinal microbiota influence acute graft-versus-host disease (aGVHD) by modulating immune homeostasis. But, in humans, the mechanism by which the microbiota induces aGVHD remains unclear. In this study, we investigated the relationship between the intestinal microbiota and T cell subsets in patients who undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT) to explore the mechanism by which microbiota induced aGVHD. Based on aGVHD, this study was categorized into two groups: grades II–IV aGVHD (aGVHD group, n = 32) and grade 0–I aGVHD (non-aGVHD group, n = 49). The intestinal microbiota was detected by 16S rRNA gene sequencing, and the T cell subsets and histone 3 (H3) acetylation in CD4+ T cells in the peripheral blood was assayed by flow cytometry at the time of engraftment. The aGVHD group had greater low microbial diversity than the non-aGVHD group (56.3 versus 24.5%, p = 0.004). The bacterial community was depleted of Clostridia (e.g., the Lachnospiraceae and Ruminococcaceae families) and enriched for Gammaproteobacteria (e.g., the Enterobacteriaceae family) in the aGVHD group compared with the non-aGVHD group. The relative abundance of Lachnospiraceae and Ruminococcaceae was positively correlated with the Treg/Th17 ratio counts (r = 0.469 and 0.419; p < 0.001 and <0.001, respectively), whereas Enterobacteriaceae was negatively correlated with the Treg/Th17 ratio (r = −0.277; p = 0.012). The level of acetylated H3 in CD4+ T cells was not only correlated with Lachnospiraceae/Ruminococcaceae, but also with the Treg/Th17 ratio (r = 0.354; p = 0.001). In conclusions, our results suggest that decreased Lachnospiraceae and Ruminococcaceae and increased Enterobacteriaceae, correlate with a Treg/Th17 imbalance, which might be through acetylated H3 in CD4+ T cells. These findings suggest that intestinal microbiota might induce aGVHD by influencing the Treg/Th17 balance.
ObjectivesThe irreversible airflow limitation characterised by chronic obstructive pulmonary disease (COPD) causes a decrease in the oxygen supply to the brain. The aim of the present study was to investigate brain structural damage in COPD.DesignRetrospective case–control study. Patients with COPD and healthy volunteers were recruited. The two groups were matched in age, gender and educational background.SettingA hospital and a number of communities: they are all located in southern Fujian province, China.Participants25 stable patients and 25 controls were enrolled from December 2009 to May 2011.MethodsUsing voxel-based morphometry and tract-based spatial statistics based on MRI to analyse grey matter (GM) density and white matter fractional anisotropy (FA), respectively, and a battery of neuropsychological tests were performed.ResultsPatients with COPD (vs controls) showed decreased GM density in the limbic and paralimbic structures, including right gyrus rectus, left precentral gyrus, bilateral anterior and middle cingulate gyri, bilateral superior temporal gyri, bilateral anterior insula extending to Rolandic operculum, bilateral thalamus/pulvinars and left caudate nucleus. Patients with COPD (vs controls) had decreased FA values in the bilateral superior corona radiata, bilateral superior and inferior longitudinal fasciculus, bilateral optic radiation, bilateral lingual gyri, left parahippocampal gyrus and fornix. Lower FA values in these regions were associated with increased radial diffusivity and no changes of longitudinal diffusivity. Patients with COPD had poor performances in the Mini-Mental State Examination, figure memory and visual reproduction. GM density in some decreased regions in COPD had positive correlations with arterial blood Po2, negative correlations with disease duration and also positive correlations with visual tasks.ConclusionThe authors demonstrated that COPD exhibited loss of regional GM accompanied by impairment of white matter microstructural integrity, which was associated with disease severity and may underlie the pathophysiological and psychological changes of COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.