Parallel studies of the preparation of Re and (99m)Tc agents aid in interpreting the nature of tracer (99m)Tc radiopharmaceuticals. Aqueous solutions of the fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) cation are gaining wide use and are readily prepared, but such solutions of the fac-[Re(CO)(3)(H(2)O)(3)](+) cation (1) are not so easily accessible. Herein we describe a new, reliable, and straightforward preparation of aqueous solutions of 1, characterized by HPLC and ESI-MS. Treatment of solutions of 1 with thioether-bearing amino acids, AAH = S-methyl-l-cysteine (MECYSH), S-propyl-l-cysteine (PRCYSH), and methionine (METH), gave high yields of fac-Re(CO)(3)AA complexes. X-ray crystallographic and NMR analyses indicated that MECYS(-), PRCYS(-), and MET(-) were bound in fac-Re(CO)(3)AA complexes as tridentate monoanionic ligands through amino, thioether, and alpha-carboxyl groups. In CD(3)OD, (1)H NMR spectra have broad signals but have two sets of signals at -10 degrees C, consistent with two isomers with different configurations at the pyramidal sulfur; these interconvert slowly on the NMR time scale at low temperatures. Indeed, the crystal structure of the fac-Re(CO)(3)(PRCYS) reveals a mixture of the two possible diastereoisomers. S-(Carboxymethyl)-l-cysteine (CCMH(2)) and 1 gave two products, 5A (kinetically favored) and 5B (thermodynamically favored). X-ray crystallographic analyses of a crystal of 5B and of a 1:1 cocrystal of 5A and 5B showed that 5A and 5B are diastereoisomers with the CCMH(-) alpha-carboxyl group dangling. In addition to the amino and thioether groups, the S-(carboxymethyl) carboxyl group is coordinated, a feature that slows interconversion of diastereoisomers relative to the other fac-Re(CO)(3)AA complexes because interconversion can now occur only after the rupture of Re-ligand bonds. These N, O, and S tridentate adducts are quite stable, and the grouping has promise in (99m)Tc(CO)(3) tracer development.
To identify new genetic risk factors for cervical cancer, we conducted a genome-wide association study in the Han Chinese population. The initial discovery set included 1,364 individuals with cervical cancer (cases) and 3,028 female controls, and we selected a 'stringently matched samples' subset (829 cases and 990 controls) from the discovery set on the basis of principal component analysis; the follow-up stages included two independent sample sets (1,824 cases and 3,808 controls for follow-up 1 and 2,343 cases and 3,388 controls for follow-up 2). We identified strong evidence of associations between cervical cancer and two new loci: 4q12 (rs13117307, Pcombined, stringently matched=9.69×10(-9), per-allele odds ratio (OR)stringently matched=1.26) and 17q12 (rs8067378, Pcombined, stringently matched=2.00×10(-8), per-allele ORstringently matched=1.18). We additionally replicated an association between HLA-DPB1 and HLA-DPB2 (HLA-DPB1/2) at 6p21.32 and cervical cancer (rs4282438, Pcombined, stringently matched=4.52×10(-27), per-allele ORstringently matched=0.75). Our findings provide new insights into the genetic etiology of cervical cancer.
The varicella zoster virus (VZV) IE62 protein is involved in the activation of expression of all three kinetic classes of VZV proteins. Analysis of the viral promoter for VZV glycoprotein I has shown that the cellular factor Sp1 is involved in or required for the observed IE62 mediated activation. Co-immunoprecipitation experiments show that the two proteins are present in a complex in VZV-infected cells. Protein affinity pull-down assays using recombinant proteins showed that IE62 and Sp1 interact in the absence of any other viral and cellular proteins. Mapping studies using GST-fusion proteins containing truncations of IE62 and Sp1 have delimited the interacting regions to amino acids 612-778 in Sp1 and amino acids 226 -299 in IE62. The region identified in Sp1 is involved in DNA-binding, synergistic Sp1 activation, and Sp1 interaction with cellular transcription factors. The interacting region identified in IE62 overlaps with or borders on sites involved in interactions with the VZV IE4 protein and the cellular factors TBP and TFIIB. Assays using wild-type and mutant promoter elements indicate that Sp1 is involved in recruitment of IE62 to the gI promoter and IE62 enhances Sp1 and TBP binding. Varicella zoster virus (VZV)1 is a member of the alphaherpesvirinae and the causative agent of chicken pox (varicella) and shingles (zoster). The VZV genome is a linear doublestranded DNA molecule, which encodes approximately seventy proteins (1). The entire complement of VZV genes is believed to be expressed during lytic infection in three broad kinetic classes, immediate early (IE), early (E), and late (L). Transcription of VZV genes is performed by the host cell RNA polymerase II, as is the case with all other herpes viruses. Efficient expression of the VZV genome is driven by a small group of VZV gene products including those encoded by open reading frames (ORFs) 62, 4, 61, 63, and 10 (2-11). The major viral transactivator is the product of ORF 62 and its complement, ORF 71, which lie within the inverted repeats bracketing the Us region of VZV DNA. This protein is commonly designated IE62 since it is synthesized in the immediate early phase of lytic VZV gene expression. IE62 contains a potent N-terminal acidic transactivation domain and is capable of activating the expression of all three kinetic classes of VZV genes (12)(13)(14).While IE62 is involved in transactivation of VZV promoters, careful analysis of a limited number of individual viral promoters has shown that cellular transcription factors acting at sites upstream of the coding regions of the viral genes are also involved in the mechanism of IE62 activation. These proteins include the ubiquitous, sequence specific cellular factor Sp1. Sp1 is the protoype of a family of closely related factors which bind to GC-rich elements including the GC-box (GGGCGG or GGGCGGG) and the related GT/CACCC-box. Sp1 contains five distinct domains, four of which (A, B, C, and D) are involved in various aspects of transcriptional activation as well as a DNA binding region conta...
Varicella-zoster virus (VZV) glycoprotein I is dispensable in cell culture but necessary for infection of human skin and T cells in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.