A direct abort orbit design method is presented for direct abort missions in the Earth-Moon transfer phase of crewed lunar exploration missions. First, according to the demand of an emergency rescue in the Earth-Moon transfer phase, two direct abort orbit schemes are introduced. Then, a serial orbit design method is proposed for a high-fidelity direct abort orbit. An analytical model is established for the calculation of initial values, and the optimization design is performed in the high-fidelity orbit model to determine a single-impulse abort orbit. A hybrid optimization design process is proposed to generate a two-impulse abort orbit. The results of simulation examples verify the validity and feasibility of the proposed direct abort orbit design method. Finally, extensive simulations are carried out to analyze the characteristics of abort impulse and abort return time and reveal the general rules of direct abort orbits. The research conclusions can provide a reference for the design of emergency rescue schemes in future crewed lunar exploration missions.
In the process of Earth-Moon transfer orbit, many parameters are involved and the degree of influence varies among the parameters. How to accurately distinguish the influence relationship between different parameters is of great significance to engineering missions. Based on Sobol sequence sampling method and Sobol global sensitivity analysis method, a calculation process of global sensitivity analysis is proposed in this paper for high-fidelity Earth-Moon transfer orbit. A numerical simulation method is used to verify that the Sobol sequence sampling method has better convergence and higher precision than other sampling methods and has better adaptability in global sensitivity analysis. The effects of different state parameters and the combination of different parameters on the perilune parameters of Earth-Moon transfer orbit are given by simulation examples, which verifies the effectiveness and feasibility of the calculation process proposed in this paper. Simulation results show that the radial position and tangential velocity at the trans-lunar injection point are the main sensitivity parameters, and the other parameters have little effect on the results. The sensitivity of the orbital elements at the trans-lunar injection point to the perilune parameters is different and needs to be determined according to the specific parameters. The results of this study can provide important reference for future Earth-Moon transfer orbit design and related engineering missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.