A phosphoramidate prodrug of 2-deoxy-2-␣-fluoro--Cmethyluridine-5-monophosphate, PSI-7851, demonstrates potent anti-hepatitis C virus (HCV) activity both in vitro and in vivo. PSI-7851 is a mixture of two diastereoisomers, PSI-7976 and PSI-7977, with PSI-7977 being the more active inhibitor of HCV RNA replication in the HCV replicon assay. To inhibit the HCV NS5B RNA-dependent RNA polymerase, PSI-7851 must be metabolized to the active triphosphate form. The first step, hydrolysis of the carboxyl ester by human cathepsin A (CatA) and/or carboxylesterase 1 (CES1), is a stereospecific reaction. Western blot analysis showed that CatA and CES1 are both expressed in primary human hepatocytes. However, expression of CES1 is undetectable in clone A replicon cells. Studies with inhibitors of CatA and/or CES1 indicated that CatA is primarily responsible for hydrolysis of the carboxyl ester in clone A cells, although in primary human hepatocytes, both CatA and CES1 contribute to the hydrolysis. Hydrolysis of the ester is followed by a putative nucleophilic attack on the phosphorus by the carboxyl group resulting in the spontaneous elimination of phenol and the production of an alaninyl phosphate metabolite, PSI-352707, which is common to both isomers. The removal of the amino acid moiety of PSI-352707 is catalyzed by histidine triad nucleotide-binding protein 1 (Hint1) to give the 5-monophosphate form, PSI-7411. siRNA-mediated Hint1 knockdown studies further indicate that Hint1 is, at least in part, responsible for converting PSI-352707 to PSI-7411. PSI-7411 is then consecutively phosphorylated to the diphosphate, PSI-7410, and to the active triphosphate metabolite, PSI-7409, by UMP-CMP kinase and nucleoside diphosphate kinase, respectively.Nucleoside analogs have long been the backbone therapy for the treatment of viral diseases such as HIV, HBV, and HSV infections (1-5). Recent studies have suggested that nucleoside analogs may be useful for treating hepatitis C virus (HCV) 3 infection (4, 6 -8). The most advanced anti-HCV nucleoside, RG7128, is a diisobutyrate nucleoside prodrug of -D-2Ј-deoxy-2Ј-␣-fluoro-2Ј--C-methylcytidine (PSI-6130) and is currently in phase IIb clinical studies. PSI-6130 demonstrated potent activity in the subgenomic HCV replicon assay (9); the incubation of radiolabeled PSI-6130 with either replicon cells or primary human hepatocytes resulted in the formation of the 5Ј-mono-, di-, and triphosphate metabolites of . The triphosphate metabolite (PSI-6130-TP) was shown to be a potent inhibitor of HCV NS5B RNA-directed RNA polymerase (RdRp) (11). However, incubation of replicon cells with the uridine analog, PSI-6206, resulted in no inhibition of HCV RNA production due to the inability of PSI-6206 to be phosphorylated by cellular nucleoside kinases to its monophosphate, 12). Biochemical studies showed that PSI-7411 was consecutively phosphorylated to its diphosphate, PSI-7410, by UMP-CMP kinase and its triphosphate, PSI-7409, by nucleoside diphosphate kinase (12). Inhibition studies using the replic...
The hepatitis C virus (HCV) NS5B RNA polymerase facilitates the RNA synthesis step during the HCV replication cycle. Nucleoside analogs targeting the NS5B provide an attractive approach to treating HCV infections because of their high barrier to resistance and pan-genotype activity. PSI-7851, a pronucleotide of -D-2-deoxy-2-fluoro-2-C-methyluridine-5-monophosphate, is a highly active nucleotide analog inhibitor of HCV for which a phase 1b multiple ascending dose study of genotype 1-infected individuals was recently completed (M. Rodriguez-Torres, E. Lawitz, S. Flach, J. M. Denning, E. Albanis, W. T. Symonds, and M. M. Berry, Abstr. 60th Annu. Meet. Am. Assoc. Study Liver Dis., abstr. LB17, 2009). The studies described here characterize the in vitro antiviral activity and cytotoxicity profile of PSI-7851. The 50% effective concentration for PSI-7851 against the genotype 1b replicon was determined to be 0.075 ؎ 0.050 M (mean ؎ standard deviation). PSI-7851 was similarly effective against replicons derived from genotypes 1a, 1b, and 2a and the genotype 1a and 2a infectious virus systems. The active triphosphate, PSI-7409, inhibited recombinant NS5B polymerases from genotypes 1 to 4 with comparable 50% inhibitory concentrations. PSI-7851 is a specific HCV inhibitor, as it lacks antiviral activity against other closely related and unrelated viruses. PSI-7409 also lacked any significant activity against cellular DNA and RNA polymerases. No cytotoxicity, mitochondrial toxicity, or bone marrow toxicity was associated with PSI-7851 at the highest concentration tested (100 M). Crossresistance studies using replicon mutants conferring resistance to modified nucleoside analogs showed that PSI-7851 was less active against the S282T replicon mutant, whereas cells expressing a replicon containing the S96T/N142T mutation remained fully susceptible to PSI-7851. Clearance studies using replicon cells demonstrated that PSI-7851 was able to clear cells of HCV replicon RNA and prevent viral rebound.Hepatitis C virus (HCV) currently affects more than 170 million people worldwide. Approximately 70% of infected individuals develop chronic hepatitis, among whom about 20% will develop liver cirrhosis and fibrosis and up to 5% will progress to hepatocellular carcinoma (2). The current standard of care (SOC), which combines pegylated alpha interferon (PegIFN-␣) and ribavirin (RBV), has limited efficacy in providing a sustained virological response (SVR), especially in individuals with HCV genotype 1 (ϳ50%), the most prevalent genotype in Western countries (8,11,35). The impact of genetic diversity of HCV in patients receiving SOC therapy has been reviewed (26): SVR rates are higher in patients infected with genotype 2 or 3 (ϳ80%), patients infected with genotype 4 appear to have a slightly better SVR rate (ϳ60%) than patients infected with genotype 1, and patients infected with genotypes 5 and 6 may achieve an SVR at a level between those of genotypes 1 and 2/3. In addition to the variability in efficacy, the lengthy treatment (24 to 48 w...
Pyruvate dehydrogenase kinase 2 (PDK2) activity is enhanced by the dihydrolipoyl acetyltransferase core (E2 60mer) that binds PDK2 and a large number of its pyruvate dehydrogenase (E1) substrate. With E2-activated PDK2, K(+) at approximately 90 mM and Cl(-) at approximately 60 mM decreased the K(m) of PDK2 for ATP and competitive K(i) for ADP by approximately 3-fold and enhanced pyruvate inhibition. Comparing PDK2 catalysis +/- E2, E2 increased the K(m) of PDK2 for ATP by nearly 8-fold (from 5 to 39 microM), increased k(cat) by approximately 4-fold, and decreased the requirement for E1 by at least 400-fold. ATP binding, measured by a cold-trapping technique, occurred at two active sites with a K(d) of 5 microM, which equals the K(m) and K(d) of PDK2 for ATP measured in the absence of E2. During E2-aided catalysis, PDK2 had approximately 3 times more ADP than ATP bound at its active site, and the pyruvate analogue, dichloroacetate, led to 16-fold more ADP than ATP being bound (no added ADP). Pyruvate functioned as an uncompetitive inhibitor versus ATP, and inclusion of ADP transformed pyruvate inhibition to noncompetitive. At high pyruvate levels, pyruvate was a partial inhibitor but also induced substrate inhibition at high ATP levels. Our results indicate that, at physiological salt levels, ADP dissociation is a limiting step in E2-activated PDK2 catalysis, that PDK2.[ADP or ATP].pyruvate complexes form, and that PDK2.ATP.pyruvate.E1 reacts with PDK2.ADP.pyruvate accumulating.
) is a potent inhibitor of hepatitis C virus (HCV) RNA replication in an HCV replicon assay. The 5-triphosphate of PSI-6130 is a competitive inhibitor of the HCV RNA-dependent RNA polymerase (RdRp) and acts as a nonobligate chain terminator. Recently, it has been shown that the metabolism of PSI-6130 also results in the formation of the 5-triphosphate of the uridine congener, -D-2-deoxy-2-fluoro-2-C-methyluridine (PSI-6206; RO2433). Here we show that the formation of the 5-triphosphate of RO2433 (RO2433-TP) requires the deamination of PSI-6130 monophosphate and that RO2433 monophosphate is subsequently phosphorylated to the corresponding di-and triphosphates by cellular UMP-CMP kinase and nucleoside diphosphate kinase, respectively. RO2433-TP is a potent inhibitor of the HCV RdRp; however, both enzymatic and cell-based assays show that PSI-6130 triphosphate is a more potent inhibitor of the HCV RdRp than RO2433-TP.Hepatitis C virus (HCV), a member of the Flaviviridae family of viruses, is one of the major causes of liver disease. Nearly 2% of the U.S. population and an estimated 170 million people worldwide are believed to be infected with HCV (2, 20). Approximately 80% of infected individuals develop a chronic infection, and long-term chronic HCV infection can lead to liver cirrhosis and hepatocellular carcinoma (7,20,24). The current standard of care is a combination of pegylated interferon alpha and ribavirin (2,6,8,21), which produces viral response rates in approximately 50% of patients infected with genotype 1 virus. Due to the adverse effects associated with both interferon and ribavirin therapy and the lack of an optimal sustained viral response in the majority of patients infected with HCV, there is a need for more potent anti-HCV compounds with fewer adverse effects.The HCV RNA-dependent RNA polymerase (RdRp; the NS5B protein) is essential for virus RNA replication and therefore represents an attractive target for therapy (3,11,14,15,25). Since nucleoside analogs form the cornerstone of therapy against human immunodeficiency virus, hepatitis B virus, and herpesviruses, such an approach to the treatment of HCV infection should prove equally effective. Recently, several nucleoside analogs with modifications at either the 2Ј or the 4Ј position have demonstrated good activity against HCV in vitro and in vivo (4, 12, 18).The discovery and development of nucleoside analogs require an understanding of the pathways and enzymes involved in the anabolism of an analog to the active triphosphate form. We have shown that -D-2Ј-deoxy-2Ј-fluoro-2Ј-C-methylcytidine (PSI-6130) is a potent and selective inhibitor of HCV RNA synthesis in an HCV replicon assay (5,19,22). Recently, we reported that PSI-6130 is anabolized to the 5Ј-triphosphate by enzymes involved in the deoxycytidine salvage pathway and that 2Ј-fluoro-2Ј-C-methylcytidine 5Ј-triphosphate (PSI-6130-TP) is an inhibitor of the HCV RdRp (19). In vitro metabolism studies have now shown that in addition to the formation of PSI-6130-TP, the 5Ј-triphosphate of th...
) is a potent specific inhibitor of hepatitis C virus (HCV) RNA synthesis in Huh-7 replicon cells. To inhibit the HCV NS5B RNA polymerase, PSI-6130 must be phosphorylated to the 5-triphosphate form. The phosphorylation of PSI-6130 and inhibition of HCV NS5B were investigated. The phosphorylation of PSI-6130 by recombinant human 2-deoxycytidine kinase (dCK) and uridine-cytidine kinase 1 (UCK-1) was measured by using a coupled spectrophotometric reaction. PSI-6130 was shown to be a substrate for purified dCK, with a K m of 81 M and a k cat of 0.007 s ؊1 , but was not a substrate for UCK-1. PSI-6130 monophosphate (PSI-6130-MP) was efficiently phosphorylated to the diphosphate and subsequently to the triphosphate by recombinant human UMP-CMP kinase and nucleoside diphosphate kinase, respectively. The inhibition of wild-type and mutated (S282T) HCV NS5B RNA polymerases was studied. The steady-state inhibition constant (K i ) for PSI-6130 triphosphate (PSI-6130-TP) with the wild-type enzyme was 4.3 M. Similar results were obtained with 2-C-methyladenosine triphosphate (K i ؍ 1.5 M) and 2-C-methylcytidine triphosphate (K i ؍ 1.6 M). NS5B with the S282T mutation, which is known to confer resistance to 2-C-methyladenosine, was inhibited by PSI-6130-TP as efficiently as the wild type. Incorporation of PSI-6130-MP into RNA catalyzed by purified NS5B RNA polymerase resulted in chain termination.Hepatitis C virus (HCV) is an RNA virus which possesses a single-stranded positive-sense RNA as the viral genome. This viral RNA plays important roles during viral replication, as it serves as an mRNA for viral protein synthesis, a template for RNA replication, and a nascent RNA genome for a newly formed virus (17). HCV NS5B RNA-dependent RNA polymerase is a key enzyme in viral RNA replication. This enzyme, which does not require a primer for initiation of RNA synthesis, catalyzes de novo RNA synthesis (8, 11). Nucleoside analogs have been used to treat viral infections, such as herpes simplex virus, human immunodeficiency virus, and hepatitis B virus infections (5,6,21). These drugs are designed to inhibit viral polymerases by a process called chain termination, in which DNA synthesis is quenched by incorporating the triphosphate forms of these drugs, which lack the 3Ј-hydroxyl group on the sugar moiety. In order for nucleoside analogs to inhibit a viral polymerase, they must be transported into the cell and converted to the active 5Ј-triphosphate form by cellular kinases. 2Ј-C-Methylnucleosides have been investigated as anti-HCV agents targeting HCV NS5B RNA polymerase (2, 20). 2Ј-C-Methyladenosine (2Ј-C-Me-A) and 2Ј-C-methylguanosine (2Ј-C-Me-G) showed potent anti-HCV activities in a cell-based replicon assay, and their triphosphate forms inhibited replicase and NS5B RNA polymerase in vitro (20). In addition, 2Ј-C-Me-A exhibited significant activity against HCV in a cell culture system which involves complete HCV replication and which produces infectious HCV (16). A resistant replicon has been selected by passage of HCV in the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.