Hair follicles periodically undergo regeneration. The balance between activators and inhibitors may determine the time required for telogen hair follicles to reenter anagen. We previously reported that Wnt10b (wingless-type mouse mammary tumor virus integration site family member 10b) could promote the growth of hair follicles in vitro. To unveil the roles of Wnt10b in hair follicle regeneration, we established an in vivo mouse model using intradermal injection. On the basis of this model, we found that Wnt10b could induce the biological switch of hair follicles from telogen to anagen when overexpressed in the skin. The induced hair follicles expressed structure markers and could cycle normally into catagen. Conversely, anagen onset was abrogated by the knockdown of Wnt10b with small interfering RNA (siRNA). The Wnt10b aberrant expression data suggest that it is one of the activators of hair follicle regeneration. The β-catenin protein is translocated to the nucleus in Wnt10b-induced hair follicles. The biological effects of Wnt10b were abrogated when β-catenin expression was downregulated with siRNA. These data revealed that Wnt10b might induce hair follicle regeneration in vivo via the enhanced activation of the canonical Wnt signaling pathway. To our knowledge, our data provide previously unreported insights into the regulation of hair follicle cycling and provide potential therapeutic targets for hair follicle-related diseases.
Hair follicles have characteristic sizes corresponding to their cycle specific stage. However, how the anagen hair follicle specifies its size remains elusive. Here, we show that in response to prolonged ectopic Wnt10b-mediated β-catenin activation, regenerating anagen hair follicles grow larger in size. In particular, the hair bulb, dermal papilla and hair shaft become enlarged. While the formation of different hair types (Guard, Awl, Auchene, and Zigzag) is unaffected. Interestingly, we found the effect of exogenous WNT10b was mainly on Zigzag and less on the other kinds of hairs. We observed dramatically enhanced proliferation within the matrix, DP and hair shaft of the enlarged AdWnt10b-treated hair follicles compared with those of normal hair follicles at P98. Furthermore, expression of CD34, a specific hair stem cell marker, was increased in its number to the bulge region after AdWnt10b treatment. Ectopic expression of CD34 throughout the ORS region was also observed. Many CD34 positive hair stem cells were actively proliferating in AdWnt10b-induced hair follicles. Importantly, subsequent co-treatment with the Wnt inhibitor, DKK1, reduced hair follicle enlargement, decreased proliferation and maintained proper hair stem cell localization. Moreover, injection of DKK1 during early anagen significantly reduced the width of prospective hairs. Together, these findings strongly suggest that a balance of Wnt10b/DKK1 governs reciprocal signaling between cutaneous epithelium and mesenchyme to regulate proper hair follicle size.
Background The periodic growth of hair follicles is regulated by the balance of activators and inhibitors. The BMP signaling pathway plays an important role during hair follicle regeneration, but the exact BMP protein that controls this process has not been revealed. Methods The expression of BMP6 was determined via in situ hybridization and immunofluorescence. The in vivo effect of BMP6 overexpression was studied by using a previously established adenovirus injection model. The hair follicle regeneration was assessed by gross observation, H&E staining and 5-bromo-2-deoxyuridine (BrdU) tracing. The expression patterns of BMP6 signaling and Wnt10b signaling in both AdBMP6-treated and AdWnt10b-treated skins were determined by in situ hybridization and immunofluorescence. Results BMP6 was expressed differently in the stages of hair follicle cycle. The telogen-anagen transition of hair follicles was inhibited by adenovirus-mediated overexpression of BMP6. In the in vivo model, the BMP6 signaling was inhibited by Wnt10b and the Wnt10b signaling was inhibited by BMP6. The activation of hair follicle stem cells (HFSCs) was also competitively regulated by Wnt10b and BMP6. Conclusions Combined with previously reported data of Wnt10b, our findings indicate that BMP6 and Wnt10b are major inhibitors and activators respectively and their balance regulates the telogen-anagen transition of hair follicles. To the best of our knowledge, our data provide previously unreported insights into the regulation of hair follicle cycling and provide new clues for the diagnosis and therapies of hair loss. Electronic supplementary material The online version of this article (10.1186/s12964-019-0330-x) contains supplementary material, which is available to authorized users.
Tai chi exercise may have positive effects on bone health in perimenopausal and postmenopausal women. This systematic review is the first to summarize evidence to clarify the efficacy of tai chi exercise in bone health. The benefits of tai chi exercise on bone health remain unclear; further studies are needed. Emerging randomized controlled trials (RCTs) exploring the efficacy of tai chi exercise on bone health among older women, but yielded inconclusive results. Our objective is to conduct a systematic review to evaluate evidence from RCTs to clarify the efficacy of tai chi exercise on bone mineral density (BMD), and bone turnover markers (BTM) in perimenopausal and postmenopausal women. Six electronic databases were searched, and reference lists of systematic reviews and identified studies from the search strategy were also screened. We included all RCTs that investigate tai chi exercise for bone health in perimenopausal and postmenopausal women. Data selection, extraction, and evaluation of risk of bias were performed independently by two reviewers. Ten trials detailed in 11 articles were included. Six of the 11 studies reported positive outcomes on bone health. Results of our meta-analysis showed a significant effect of tai chi exercise on BMD change at the spine compared with no treatment in perimenopausal and postmenopausal women. When tai chi exercise combined with a calcium supplement was compared with the calcium supplement alone, the result of BMD change at the spine showed no significant effect. Because the measurable effect observed was minimal, and due to the low quality of methodology of the studies, we conclude that the result is of limited reliability. Tai chi exercise may have benefits on bone health in perimenopausal and postmenopausal women, but the evidence is sometimes weak, poor, and inconsistent. Consequently, only limited conclusions can be drawn regarding the efficacy of tai chi exercise on bone health. Further well designed studies with low risk of bias are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.