Background Polymorphonuclear neutrophils (PMNs) play an important role in sepsis-related acute lung injury (ALI). Accumulating evidence suggests PMN-derived exosomes as a new subcellular entity acting as a fundamental link between PMN-driven inflammation and tissue damage. However, the role of PMN-derived exosomes in sepsis-related ALI and the underlying mechanisms remains unclear. Methods Tumor necrosis factor-α (TNF-α), a key regulator of innate immunity in sepsis-related ALI, was used to stimulate PMNs from healthy C57BL/6J mice in vitro. Exosomes isolated from the supernatant were injected to C57BL/6J wild-type mice intraperitoneally (i.p.) and then examined for lung inflammation, macrophage (Mϕ) polarization and pyroptosis. In vitro co-culture system was applied where the mouse Raw264.7 macrophages or bone marrow-derived macrophages (BMDMs) were co-cultured with PMN-derived exosomes to further confirm the results of in vivo animal study and explore the potential mechanisms involved. Results Exosomes released by TNF-α-stimulated PMNs (TNF-Exo) promoted M1 macrophage activation after in vivo i.p. injection or in vitro co-culture. In addition, TNF-Exo primed macrophage for pyroptosis by upregulating NOD-like receptor 3 (NLRP3) inflammasome expression through nuclear factor κB (NF-κB) signaling pathway. Mechanistic studies demonstrated that miR-30d-5p mediated the function of TNF-Exo by targeting suppressor of cytokine signaling (SOCS-1) and sirtuin 1 (SIRT1) in macrophages. Furthermore, intravenous administration of miR-30d-5p inhibitors significantly decreased TNF-Exo or cecal ligation and puncture (CLP)-induced M1 macrophage activation and macrophage death in the lung, as well as the histological lesions. Conclusions The present study demonstrated that exosomal miR-30d-5p from PMNs contributed to sepsis-related ALI by inducing M1 macrophage polarization and priming macrophage pyroptosis through activating NF-κB signaling. These findings suggest a novel mechanism of PMN-Mϕ interaction in sepsis-related ALI, which may provide new therapeutic strategies in sepsis patients.
Melatonin is a well-known anti-inflammatory and antioxidant molecule, which plays a crucial role in various physiological functions. In this study, mice received a single dose of 15 Gy radiation delivered to the lungs and daily intraperitoneal administration of melatonin. After 7 days, mice were processed to harvest either bronchoalveolar lavage fluid for cytokine assays or lungs for flow cytometry and histopathological studies. Herein, we showed that melatonin markedly alleviated the oxidative stress and injury, especially suppressing the infiltration of macrophages (CD11b+CD11c−) and neutrophils (CD11b+Ly6G+) to the irradiated lungs. Moreover, in the irradiated RAW 264.7 cells, melatonin blocked the NLRP3 inflammasome activation accompanied with the inhibition of the IL-1β release and caspase-1 activity. However, melatonin restored the downregulated miR-30e levels. Quantitative PCR analysis of miR-30e and NLRP3 indicated the negative correlation between them. Notably, immunofluorescence staining showed that overexpression of miR-30e dramatically diminished the increased NLRP3 expression. Luciferase reporter assay confirmed that NLRP3 was a target gene of miR-30e. Western blotting revealed that transfection with miR-30e mimics markedly reduced the expressions of NLRP3 and cleaved caspase-1, whereas this phenomenon was reversed by the miR-30e inhibitor. Consistent with this, the beneficial effect of melatonin under irradiated exposure was blunted in cells transfected with anti-miR-30e. Collectively, our results demonstrate that the NLRP3 inflammasome contributed to the pathogenesis of radiation-induced lung injury. Meanwhile, melatonin exerted its protective effect through negatively regulating the NLRP3 inflammasome in macrophages. The melatonin-mediated miR-30e/NLRP3 signaling may provide novel therapeutic targets for radiation-induced injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.