Understanding the relationship between short-term subway ridership and its influential factors is crucial to improving the accuracy of short-term subway ridership prediction. Although there has been a growing body of studies on short-term ridership prediction approaches, limited effort is made to investigate the short-term subway ridership prediction considering bus transfer activities and temporal features. To fill this gap, a relatively recent data mining approach called gradient boosting decision trees (GBDT) is applied to short-term subway ridership prediction and used to capture the associations with the independent variables. Taking three subway stations in Beijing as the cases, the short-term subway ridership and alighting passengers from its adjacent bus stops are obtained based on transit smart card data. To optimize the model performance with different combinations of regularization parameters, a series of GBDT models are built with various learning rates and tree complexities by fitting a maximum of trees. The optimal model performance confirms that the gradient boosting approach can incorporate different types of predictors, fit complex nonlinear relationships, and automatically handle the multicollinearity effect with high accuracy. In contrast to other machine learning methods-or "black-box" procedures-the GBDT model can identify and rank the relative influences of bus transfer activities and temporal features on short-term subway ridership. These findings suggest that the GBDT model has considerable advantages in improving short-term subway ridership prediction in a multimodal public transportation system.
This is the first population-based epidemiological study of CKD in the Tibetan population. We found a higher prevalence of CKD and associated high prevalence of albuminuria, hypertension, hyperuricaemia and high haematocrit in the Tibetan population. The present study indicates the urgent need to develop comprehensive strategies targeted at reducing the CKD burden in this area and may lead to a better understanding of CKD in high-altitude populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.