To investigate the infections of severe fever with thrombocytopenia syndrome virus (SFTSV) in domesticated animals, we sampled a total of 3,039 animals in 2 counties in Shandong Province, People’s Republic of China, from April to November 2011. SFTSV-specific antibodies were detected in 328 (69.5%) of 472 sheep, 509 (60.5%) of 842 cattle, 136 (37.9%) of 359 dogs, 26 (3.1%) of 839 pigs, and 250 (47.4%) of 527 chickens. SFTSV RNA was detected in all sampled animal species, but the prevalence was low, ranging from 1.7% to 5.3%. A cohort study in 38 sheep was conducted to determine when seroconversion to SFTSV occured. SFTSVs were isolated from sheep, cattle, and dogs and shared >95% sequence homology with human isolates from the same disease-endemic regions. These findings demonstrate that natural infections of SFTSV occur in several domesticated animal hosts in disease-endemic areas and that the virus has a wide host range.
Phytohormones play critical roles in regulating plant responses to stress. We investigated the effects of water stress induced by adding 12% (w/v) polyethylene glycol to the root medium on the levels of abscisic acid (ABA), indole-3-acid (IAA), zeatin (ZT), and gibberellin(3) (GA(3)) in maize leaves. The results suggested that water stress had significant effects on the four hormone levels. There was a transient increase in the IAA content during the initial stage of adaptation to water stress in maize leaves, but it dropped sharply thereafter in response to water stress. ABA content increased dramatically in maize leaves after 24 h of exposure to water stress, and then the high levels of ABA were maintained to the end. The contents of ZT and GA(3) rapidly declined in maize leaves subjected to water stress. The effects of water stress on chlorophyll content, electrolyte leakage and malondialdehyde levels in maize leaves were also studied. The variation of cell damage was negatively correlated with ZT and GA(3) levels in maize leaves under water stress. Thus, we explored the roles of ZT and GA(3) on the growth of maize seedlings under water stress by exogenous application. It is possible that both ZT and GA(3) were effective in protecting maize seedlings from water stress, which would be of great importance for the improvement of drought tolerance in maize by genetic manipulation.
BackgroundSevere Fever with Thrombocytopenia Syndrome (SFTS) is an emerging infectious disease in East Asia. SFTS is a tick borne hemorrhagic fever caused by SFTSV, a new bunyavirus named after the syndrome. We investigated the epidemiology of SFTS in Laizhou County, Shandong Province, China.MethodsWe collected serum specimens of all patients who were clinically diagnosed as suspected SFTS cases in 2010 and 2011 in Laizhou County. The patients' serum specimens were tested for SFTSV by real time fluorescence quantitative PCR (RT-qPCR). We collected 1,060 serum specimens from healthy human volunteers by random sampling in Laizhou County in 2011. Healthy persons' serum specimens were tested for specific SFTSV IgG antibody by ELISA.Results71 SFTS cases were diagnosed in Laizhou County in 2010 and 2011, which resulted in the incidence rate of 4.1/100,000 annually. The patients ranged from 15 years old to 87 years old and the median age of the patients were 59 years old. The incidence rate of SFTS was significantly higher in patients over 40 years old and fatal cases only occurred in patients over 50 years old. 3.3% (35/1,060) of healthy people were positive to SFTSV IgG antibody. The SFTSV antibody positive rate was not significantly different among people at different age groups.ConclusionOur results revealed that seroprevalence of SFTSV in healthy people in Laizhou County was not significantly different among age groups, but SFTS patients were mainly elderly people, suggesting that age is the critical risk factor or determinant for SFTS morbidity and mortality.
Phosphatidylinositol-specific phospholipase C (PI-PLC) plays an important role in a variety of physiological processes in plants, including drought tolerance. It has been reported that the ZmPLC1 gene cloned from maize (Zea mays L.) encoded a PI-PLC and up-regulated the expression in maize roots under dehydration conditions (Zhai SM, Sui ZH, Yang AF, Zhang JR in Biotechnol Lett 27:799-804, 2005). In this paper, transgenic maize expressing ZmPLC1 transgenes in sense or antisense orientation were generated by Agrobacterium-mediated transformation and confirmed by Southern blot analysis. High-level expression of the transgene was confirmed by real-time RT-PCR and PI-PLC activity assay. The tolerance to drought stress (DS) of the homogenous transgenic maize plants was investigated at two developmental stages. The results demonstrated that, under DS conditions, the sense transgenic plants had higher relative water content, better osmotic adjustment, increased photosynthesis rates, lower percentage of ion leakage and less lipid membrane peroxidation, higher grain yield than the WT; whereas those expressing the antisense transgene exhibited inferior characters compared with the WT. It was concluded that enhanced expression of sense ZmPLC1 improved the drought tolerance of maize.
SUMMARY:A serosurvey of severe fever with thrombocytopenia syndrome virus (SFTSV) infection in domestic animals was conducted in the rural areas of Laizhou City, Shandong Province, China to determine strategies for control and prevention of SFTS. Serum samples were collected from cattle, goats, dogs, pigs, and chickens and antibodies against SFTSV were detected by double-antigen sandwich enzyme-linked immunosorbent assay (ELISA). Of 641 serum samples, the SFTSV seropositive rate was 41.8z (268/641): 74.8z, 57.1z, 52.1z, 35.9z, and 0z, for goats, cattle, dogs, chickens, and pigs, respectively. We also found that the SFTSV seropositive rates were high among the aged cattle, goats, dogs, and chickens. SFTSV infections existed among cattle, goats, dogs, and chickens in Laizhou City, and goats had the highest seroprevalence. SFTSV seroprevalence increased with an increase in age among animals. To control of animal infestation with ticks may prevent human SFTSV infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.