Lung cancer stem cells are a subpopulation of cells critical for lung cancer progression, metastasis, and drug resistance. Thioridazine, a classical neurological drug, has been reported with anticancer ability. However, whether thioridazine could inhibit lung cancer stem cells has never been studied. In our current work, we used different dosage of thioridazine to test its effect on lung cancer stem cells sphere formation. The response of lung cancer stem cells to chemotherapy drug with thioridazine treatment was measured. The cell cycle distribution of lung cancer stem cells after thioridazine treatment was detected. The in vivo inhibitory effect of thioridazine was also measured. We found that thioridazine could dramatically inhibit sphere formation of lung cancer stem cells. It sensitized the LCSCs to chemotherapeutic drugs 5-FU and cisplatin. Thioridazine altered the cell cycle distribution of LCSCs and decreased the proportion of G0 phase cells in lung cancer stem cells. Thioridazine inhibited lung cancer stem cells initiated tumors growth in vivo. This study showed that thioridazine could inhibit lung cancer stem cells in vitro and in vivo. It provides a potential drug for lung cancer therapy through targeting lung cancer stem cells.
In order to explore the proteins responsible for hepatocellular carcinoma (HCC), aflatoxin B(1)-induced hepatocarcinogenesis in tree shrew (Tupaia belangeri chinensis) was analyzed with 2-DE and MS. By comparing HCC samples with their own precancerous biopsies and HCC-surrounding tissues, a group of candidate proteins that differentially expressed in HCC were obtained. Peroxiredoxin (Prx) II, one of the candidates with distinct alteration, was further investigated and validated. Western blot and RT-PCR assays confirmed the overexpression of Prx II in both tree shrew and human HCC tissues. RNA interference for silencing Prx II was employed subsequently to explore the function and underlying mechanism of Prx II on liver cancer cell line Hep3B. Results showed the cell proliferation and clone formation decreased obviously when Prx II expression was inhibited, while the flow cytometer analysis showed the percentage of cell apoptosis enhanced. Inhibition of Prx II expression also obviously increased the generation of ROS and malondialdehyde, both are the products from peroxidation. These results imply the important role of Prx II in hepatocarcinogenesis, possibly through its function in regulating peroxidation and hereby to provide a favorable microenvironment for cancer cell surviving and progressing.
ABSTRACT. Polymorphisms of the major histocompatibility complex (MHC) have been linked to many diseases, especially autoimmune disorders. Previous studies have shown that genetic variants in MHC class III are associated with breast cancer. To determine if there is an association between MHC class III and breast cancer risk in the Chinese Han population, we carried out a hospital-based case-control study in Guangdong and Jiangsu Provinces, including 216 histologically confirmed breast cancer patients and 216 healthy controls. Nine SNP markers distributed in the class III-coding region were detected using the Sequenom MassARRAY ® iPLEX System. Deviation from Hardy-Weinberg equilibrium was observed for seven SNPs. There was no significant association between these seven SNP variants and breast cancer in these Chinese women (unconditional logistic regression analysis). However, chr6_31697494 at BAT2, one of the seven SNPs, was found to be significantly associated with both ER-and PR-positive breast cancer. In addition, both chr6_31911109 at C6orf48 and chr6_31975605 at ZBTB12, another two of the seven SNPs, show relevance with ER-positive breast cancer. In conclusion, this is the first evidence that genetic polymorphisms in the MHC class III region are significantly associated with ER-positive breast cancer in the Han Chinese population.
Intercropping is an important soil management practice for increasing orchard productivity and land-use efficiency because it has beneficial effects on soil microbial communities and soil properties. However, there is relatively little information available regarding the effects of different crops/grasses on soil microbial communities and soil metabolic products in apple orchards in arid and semi-arid regions. In this study, we showed the microbial communities of apple, intercropping plants, and sandy waste soil, using the third-generation PacBio SMRT long-read sequencing technology. Our results also revealed that the microbial communities and soil metabolic properties differed significantly between apple and the sandy waste soil and the intercropping plants. Intercropping could significantly enrich diverse microbial species, microbial nitrogen, and microbial carbon of soil. Moreover, intercropping with licorice showed better effects in recruiting beneficial microbes, compared to grass and pepper, significantly enriching species belonging to some well-known taxa with beneficial effects, including Bacillus, Ensifer, Paenibacillus, Rhizobium, and Sphingomonas. Thus, intercropping with licorice may improve apple tree growth and disease resistance. Furthermore, Bradyrhizobium and Rubrobacter were included among the keystone taxa of apple, whereas Bacillus, Chitinophaga, Stenotrophobacter, Rubrobacter, and Luteimonas were the keystone taxa of the intercropping plants. The results of our study suggest that intercropping with licorice is a viable option for increasing apple orchard productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.