This paper investigates the approximate controllability and optimal controls of fractional dynamical systems of order 1 < q < 2 in Banach spaces. We research a class of fractional dynamical systems governed by fractional integrodifferential equations with nonlocal initial conditions. Using the Krasnosel'skii fixed point theorem and the Schauder fixed point theorem, the approximate controllability results are obtained under two cases of the nonlinear term. We also present the existence results of optimal pairs of the corresponding fractional control systems with a Bolza cost function. Finally, an application is given to illustrate the effectiveness of our main results. MSC: 26A33; 49J15; 49K27; 93B05; 93C25
We firstly study the existence of PC-mild solutions for impulsive fractional semilinear integrodifferential equations and then present controllability results for fractional impulsive integrodifferential systems in Banach spaces. The method we adopt is based on fixed point theorem, semigroup theory, and generalized Bellman inequality. The results obtained in this paper improve and extend some known results. At last, an example is presented to demonstrate the applications of our main results.
A computational scheme is employed to investigate various types of the solution of the fractional nonlinear longitudinal strain wave equation. The novelty and advantage of the proposed method are illustrated by applying this model. A new fractional definition is used to convert the fractional formula of these equations into integer-order ordinary differential equations. Soliton, rational functions, the trigonometric function, the hyperbolic function, and many other explicit wave solutions are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.