Background Unmanned aerial vehicle (UAV)-based remote sensing provides a flexible, low-cost, and efficient approach to monitor crop growth status at fine spatial and temporal resolutions, and has a high potential to accelerate breeding process and improve precision field management. Method In this study, we discussed the use of lightweight UAV with dual image-frame snapshot cameras to estimate aboveground biomass (AGB) and panicle biomass (PB) of rice at different growth stages with different nitrogen (N) treatments. The spatial–temporal variations in the typical vegetation indices (VIs) and AGB were first investigated, and the accuracy of crop surface model (CSM) extracted from the Red Green Blue (RGB) images at two different stages were also evaluated. Random forest (RF) model for AGB estimation as well as the PB was then developed. Furthermore, variable importance and sensitivity analysis of UAV variables were performed to study the potential of improving model robustness and prediction accuracies. Results It was found that the canopy height extracted from the CSM (Hcsm) exhibited a high correlation with the ground-measured canopy height, while it was unsuitable to be independently used for biomass assessment of rice during the entire growth stages. We also observed that several VIs were highly correlated with AGB, and the modified normalized difference spectral index extracted from the multispectral image achieved the highest correlation. RF model with fusing RGB and multispectral image data substantially improved the prediction results of AGB and PB with the prediction of root mean square error (RMSEP) reduced by 8.33–16.00%. The best prediction results for AGB and PB were achieved with the coefficient of determination (r 2 ), the RMSEP and relative RMSE (RRMSE) of 0.90, 0.21 kg/m 2 and 14.05%, and 0.68, 0.10 kg/m 2 and 12.11%, respectively. In addition, the result confirmed that the sensitivity analysis could simplify the prediction model without reducing the prediction accuracy. Conclusion These findings demonstrate the feasibility of applying lightweight UAV with dual image-frame snapshot cameras for rice biomass estimation, and its potential for high throughput analysis of plant growth-related traits in precision agriculture as well as the advanced breeding program. Electronic supplementary material The online version of this article (10.1186/s13007-019-0418-8) contains supplementary material, which is available to authorized users.
Plant responses to drought stress are complex due to various mechanisms of drought avoidance and tolerance to maintain growth. Traditional plant phenotyping methods are labor-intensive, time-consuming, and subjective. Plant phenotyping by integrating kinetic chlorophyll fluorescence with multicolor fluorescence imaging can acquire plant morphological, physiological, and pathological traits related to photosynthesis as well as its secondary metabolites, which will provide a new means to promote the progress of breeding for drought tolerant accessions and gain economic benefit for global agriculture production. Combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging proved to be efficient for the early detection of drought stress responses in the Arabidopsis ecotype Col-0 and one of its most affected mutants called reduced hyperosmolality-induced [Ca2+]i increase 1. Kinetic chlorophyll fluorescence curves were useful for understanding the drought tolerance mechanism of Arabidopsis. Conventional fluorescence parameters provided qualitative information related to drought stress responses in different genotypes, and the corresponding images showed spatial heterogeneities of drought stress responses within the leaf and the canopy levels. Fluorescence parameters selected by sequential forward selection presented high correlations with physiological traits but not morphological traits. The optimal fluorescence traits combined with the support vector machine resulted in good classification accuracies of 93.3 and 99.1% for classifying the control plants from the drought-stressed ones with 3 and 7 days treatments, respectively. The results demonstrated that the combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging with the machine learning technique was capable of providing comprehensive information of drought stress effects on the photosynthesis and the secondary metabolisms. It is a promising phenotyping technique that allows early detection of plant drought stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.