A novel hybrid region-based active contour model is presented to segment medical images with intensity inhomogeneity. The energy functional for the proposed model consists of three weighted terms: global term, local term, and regularization term. The total energy is incorporated into a level set formulation with a level set regularization term, from which a curve evolution equation is derived for energy minimization. Experiments on some synthetic and real images demonstrate that our model is more efficient compared with the localizing region-based active contours (LRBAC) method, proposed by Lankton, and more robust compared with the Chan-Vese (C-V) active contour model.
Nowadays, natural scene statistics (NSS) based blind image quality assessment (BIQA) models trained by machine learning, tend to achieve excellent performance. However, BIQA is still a very challenging research topic due to the lack of reference images. The key of further improvement lies in feature mining and pooling strategy decision. In this work, a new BIQA model is proposed to utilize local normalized multi-scale difference of Gaussian (DoG) response in distorted images as features which show a high correlation with perceptual quality. Then, a three-stepframework based deep neural network (DNN) is designed and employed as the pooling strategy. Compared with the support vector machine (SVM), the proposed three-stepframework DNN can excavate better feature representation, leading to more accurate predictions and stronger generalization ability. The proposed model achieves stateof-the-art performance on two authoritative databases and excellent generalization ability in cross database experiments.Index Terms-Blind image quality assessment, deep neural network, stacked auto-encoder, DoG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.