As one of the most remarkable oxygen evolution reaction (OER) electrocatalysts, metal chalcogenides have been intensively reported during the past few decades because of their high OER activities. It has been reported that electron-chemical conversion of metal chalcogenides into oxides/hydroxides would take place after the OER. However, the transition mechanism of such unstable structures, as well as the real active sites and catalytic activity during the OER for these electrocatalysts, has not been understood yet; therefore a direct observation for the electrocatalytic water oxidation process, especially at nano or even angstrom scale, is urgently needed. In this research, by employing advanced Cs-corrected transmission electron microscopy (TEM), a step by step oxidational evolution of amorphous electrocatalyst CoS x into crystallized CoOOH in the OER has been in situ captured: irreversible conversion of CoS x to crystallized CoOOH is initiated on the surface of the electrocatalysts with a morphology change via Co(OH) 2 intermediate during the OER measurement, where CoOOH is confirmed as the real active species. Besides, this transition process has also been confirmed by multiple applications of X-ray photoelectron spectroscopy (XPS), in situ Fourier-transform infrared spectroscopy (FTIR), and other ex situ technologies. Moreover, on the basis of this discovery, a high-efficiency electrocatalyst of a nitrogen-doped graphene foam (NGF) coated by CoS x has been explored through a thorough structure transformation of CoOOH. We believe this in situ and in-depth observation of structural evolution in the OER measurement can provide insights into the fundamental understanding of the mechanism for the OER catalysts, thus enabling the more rational design of low-cost and high-efficient electrocatalysts for water splitting.
Artificial nitrogen fixation through the nitrogen reduction reaction (NRR) under ambient conditions is a potentially promising alternative to the traditional energy-intensive Haber–Bosch process. For this purpose, efficient catalysts are urgently required to activate and reduce nitrogen into ammonia. Herein, by the combination of experiments and first-principles calculations, we demonstrate that copper single atoms, attached in a porous nitrogen-doped carbon network, provide highly efficient NRR electrocatalysis, which compares favorably with those previously reported. Benefiting from the high density of exposed active sites and the high level of porosity, the Cu SAC exhibits high NH3 yield rate and Faradaic efficiency (FE), specifically ∼53.3 μgNH3 h–1 mgcat –1 and 13.8% under 0.1 M KOH, ∼49.3 μgNH3 h–1 mgcat –1 and 11.7% under 0.1 M HCl, making them truly pH-universal. They also show good stability with little current attenuation over 12 h of continuous operation. Cu–N2 coordination is identified as the efficient active sites for the NRR catalysis.
Water oxidation is the key process for many sustainable energy technologies containing artificial photosynthesis and metal-air batteries. Engineering inexpensive yet active electrocatalysts for water oxidation is mandatory for the cost-effective generation of solar fuels. Herein, we propose a novel hierarchical porous Ni-Co-mixed metal sulfide (denoted as NiCoS) on TiCT MXene via a metal-organic framework (MOF)-based approach. Benefiting from the unique structure and strong interfacial interaction between NiCoS and TiCT sheets, the hybrid guarantees an enhanced active surface area with prominent charge-transfer conductivity and thus a superior activity toward oxygen evolution reactions (OERs). Impressively, the hierarchical NiCoS in the hybrid is converted to nickel/cobalt oxyhydroxide-NiCoS assembly (denoted as NiCoOOH-NiCoS) by OER measurement, where NiCoOOH on the surface is confirmed as the intrinsic active species for the consequent water oxidation. The hybrid material is further applied to an air cathode for a rechargeable zinc-air battery, which exhibits low charging/discharging overpotential and long-term stability. Our work underscores the tuned structure and electrocatalytic OER performance of MOF derivatives by the versatility of MXenes and provides insight into the structure-activity relationship for noble metal-free catalysts.
Noble-metal-free bimetal-based electrocatalysts have shown high efficiency for water oxidation. Ni and/or Co in these electrocatalysts are essential to provide a conductive, high-surface area and a chemically stable host. However, the necessity of Ni or Co limits the scope of low-cost electrocatalysts. Herein, we report a hierarchical hollow FeV composite, which is Ni- and Co-free and highly efficient for electrocatalytic water oxidation with low overpotential 390 mV (10 mA cm catalytic current density), low Tafel slope of 36.7 mV dec , and a considerable durability. This work provides a novel and efficient catalyst, and greatly expands the scope of low-cost Fe-based electrocatalysts for water splitting without need of Ni or Co.
Using renewable electricity to synthesize ammonia from nitrogen paves a sustainable route to making value-added chemicals but yet requires further advances in electrocatalyst development and device integration. By engineering both electrocatalyst and electrolyzer to simultaneously regulate chemical kinetics and thermodynamic driving forces of the electrocatalytic nitrogen reduction reaction (ENRR), we report herein stereoconfinement-induced densely populated metal single atoms (Rh, Ru, Co) on graphdiyne (GDY) matrix (formulated as M SA/GDY) and realized a boosted ENRR activity in a pressurized reaction system. Remarkably, under the pressurized environment, the hydrogen evolution reaction of M SA/GDY was effectively suppressed and the desired ENRR activity was strongly amplificated. As a result, the pressurized ENRR activity of Rh SA/GDY at 55 atm exhibited a record-high NH3formation rate of 74.15 μg h−1⋅cm−2, a Faraday efficiency of 20.36%, and a NH3partial current of 0.35 mA cm−2at −0.20 V versus reversible hydrogen electrode, which, respectively, displayed 7.3-, 4.9-, and 9.2-fold enhancements compared with those obtained under ambient conditions. Furthermore, a time-independent ammonia yield rate using purified15N2confirmed the concrete ammonia electroproduction. Theoretical calculations reveal that the driving force for the formation of end-on N2* on Rh SA/GDY increased by 9.62 kJ/mol under the pressurized conditions, facilitating the ENRR process. We envisage that the cooperative regulations of catalysts and electrochemical devices open up the possibilities for industrially viable electrochemical ammonia production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.