It remains unclear on how PM2.5 interacts with other air pollutants and meteorological factors at different temporal scales, while such knowledge is crucial to address the air pollution issue more effectively. In this study, we explored such interaction at various temporal scales, taking the city of Nanjing, China as a case study. The ensemble empirical mode decomposition (EEMD) method was applied to decompose time series data of PM2.5, five other air pollutants, and six meteorological factors, as well as their correlations were examined at the daily and monthly scales. The study results show that the original PM2.5 concentration significantly exhibited non-linear downward trend, while the decomposed time series of PM2.5 concentration by EEMD followed daily and monthly cycles. The temporal pattern of PM10, SO2 and NO2 is synchronous with that of PM2.5. At both daily and monthly scales, PM2.5 was positively correlated with CO and negatively correlated with 24-h cumulative precipitation. At the daily scale, PM2.5 was positively correlated with O3, daily maximum and minimum temperature, and negatively correlated with atmospheric pressure, while the correlation pattern was opposite at the monthly scale.
PurposeThis paper aims to promote urban–rural synergy in carbon reduction and achieve the dual carbon goal, reconstruct the low-carbon urban–rural spatial pattern and explore planning strategies for carbon mitigation in urban agglomerations.Design/methodology/approachThe authors propose the idea of land governance zoning based on low-carbon scenario simulation, using the Beijing–Tianjin–Hebei (BTH) urban agglomeration as the empirical research area. Specifically, the authors analyze its spatiotemporal evolution characteristics of carbon balance over the past two decades and simulate the land use pattern under the scenario of low-carbon emission in 2030. Furthermore, the authors create spatial zoning rules combined with land use transition characteristics to classify the urban agglomeration into carbon sink restoration zone, carbon sink protection zone, carbon control development zone and carbon transition agriculture zone and put forward corresponding targeted governance principals.FindingsThe study findings classify the BTH urban agglomeration into carbon sink restoration zone, carbon sink protection zone, carbon control development zone and carbon transition agriculture zone, which account for 28.1%, 17.2%, 20.1% and 34.6% of the total area, respectively. The carbon sink restoration zone and carbon sink protection zone are mainly distributed in the northern and western parts and Bohai Rim region. The carbon transition agriculture zone and carbon control development zone are mainly distributed in the southeastern plain and Zhangjiakou.Research limitations/implicationsThe authors suggest restoring and rebuilding ecosystems mainly in the northwest and east parts to increase the number of carbon sinks and the stability of the ecosystem. Besides, measures should be taken to promote collaborative emission reduction work between cities and optimize industrial and energy structures within cities such as Beijing, Langfang, Tianjin and Baoding. Furthermore, the authors recommend promoting sustainable intensification of agriculture and carefully balance between both economic development and ecological protection in Zhangjiakou and plain area.Originality/valueThe authors propose a zoning method based on the optimization of land use towards low-carbon development by combining “top-down” and “bottom-up” strategies and provide targeted governance suggestions for each region. This study provides policy implications to implement the regional low-carbon economic transition under the “double carbon” target in urban agglomerations in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.