Air-borne particulate matter, PM2.5 (PM having a diameter of less than 2.5 micrometers), has aroused widespread concern and is a core indicator of severe air pollution in many cities globally. In our study, we present a validated framework to predict the daily PM2.5 distributions, exemplified by a use case of Shijiazhuang City, China, based on daily aerosol optical depth (AOD) datasets. The framework involves obtaining the high-resolution spatiotemporal AOD distributions, estimation of the spatial distributions of PM2.5 and the prediction of these based on a convolutional long short-term memory (ConvLSTM) model. In the estimation part, the eXtreme gradient boosting (XGBoost) model has been determined as the estimation model with the lowest root mean square error (RMSE) of 32.86 µg/m3 and the highest coefficient of determination regression score function (R2) of 0.71, compared to other common models used as a baseline for comparison (linear, ridge, least absolute shrinkage and selection operator (LASSO) and cubist). For the prediction part, after validation and comparison with a seasonal autoregressive integrated moving average (SARIMA), which is a traditional time-series prediction model, in both time and space, the ConvLSTM gives a more accurate performance for the prediction, with a total average prediction RMSE of 14.94 µg/m3 compared to SARIMA’s 17.41 µg/m3. Furthermore, ConvLSTM is more stable and with less fluctuations for the prediction of PM2.5 in time, and it can also eliminate better the spatial predicted errors compared to SARIMA.
Wetlands are a distinctive terrestrial ecosystem that benefits living things, including people, in various ways. Sustainable wetland ecosystem resources are needed to protect the global environment. Wetlands in China have undergone positive and negative changes in response to several factors, but studies documenting their long-term dynamicity have been few, particularly in Guangling County. This study examines the change of wetlands area based on remotely sensed data while exploring trends associated with climate variations and economic growth in Guangling County, China. Analysis of remotely sensed imagery, mainly in hilly and nonhomogeneous environments is problematic, largely as a result of interference and their high spectral non-homogeneity. We conducted experiments using five classical machine learning algorithms based on the Google Earth Engine (GEE) and obtained the greatest robustness and accuracy using a Support Vector Machine (SVM)—Radial Basis Function (RBF) kernel approach, with overall accuracy and kappa statistics ranging from 86% to 98.1% and from 0.789 to 0.960, respectively. Based on the SVM-RBF model’s outperformance of four other algorithms, we identified spatial distributions of wetland in the study area and associated change trends. We found that 45.71 km2 of wetland area was lost over the past 3.7 decades (January 1984–December 2020), or 81.82% of wetland area coverage. In this paper, we explore how factors such as county economic growth (GDP), humidity, and temperature variations are tightly linked with wetland change.
The interplay of specific weather conditions and human activity results due to haze. When the haze arrives, individuals will use microblogs to communicate their concerns and feelings. It will be easier for municipal administrators to alter public communication and resource allocation under the haze if we can master the emotions of netizens. Psychological tolerance is the ability to cope with and adjust to psychological stress and unpleasant emotions brought on by adversity, and it can guide human conduct to some extent. Although haze has a significant impact on human health, environment, transportation, and other factors, its impact on human mental health is concealed, indirect, and frequently underestimated. In this study, psychological tolerance was developed as a psychological impact evaluation index to quantify the impact of haze on human mental health. To begin, data from microblogs in China’s significantly haze-affected districts were collected from 2013 to 2019. The emotion score was then calculated using SnowNLP, and the subject index was calculated using the co-word network approach, both of which were used as social media evaluation indicators. Finally, utilizing ecological and socioeconomic factors, psychological tolerance was assessed at the provincial and prefecture level. The findings suggest that psychological tolerance differs greatly between areas. Psychological tolerance has a spatio-temporal trajectory in the timeseries as well. The findings offer a fresh viewpoint on haze’s mental effects.
Some studies have shown that haze not only poses a threat to people’s health, but also affects the secretion of human hormones, making people depressed and endangering mental health. Microblog has the advantages of short content, rapid communication and convenient interaction. When the haze comes, a large number of topic microblogs related to the haze will be generated. Mining the topics of concern and psychological reactions contained in these microblogs is helpful for resource allocation and public opinion publicity in the case of haze. At present, the research of microblog topic mining in haze situation only involves a single research area, and few studies discuss the spatial differences of different regions. Based on this, this study collected the microblog data of seven provincial capitals in the severe haze areas in 2017, and used the community-based co word network method to complete a series of experimental steps, such as keyword extraction, co-occurrence matrix construction, co-word network construction and topic community detection. On this basis, we detected the topic community in the microblog data set, and analyzed the horizontal differences of topics in different cities. The results show that different cities have not only the same but also different concerns about haze. The results can provide theoretical guidance for the healthy development of cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.