Multiple direct injection (MDI) is a promising strategy to enable fast-response ignition control as well as expansion of the homogeneous charge compression ignition (HCCI) engine operating window, thus realizing substantial reductions of soot and NO x emissions. The present paper extends a zero-dimensional-probability-density-function-based stochastic reactor model (SRM) for HCCI engines in order to incorporate MDI and an improved turbulent mixing model. For this, a simplistic spray model featuring injection, penetration, and evaporation sub-models is formulated, and mixing is described by the Euclidean minimal spanning tree (EMST) sub-model accounting for localness in composition space. The model is applied to simulate a gasoline HCCI engine, and the in-cylinder pressure predictions for single and dual injection cases show a satisfactory agreement with measurements. From the parametric studies carried out it is demonstrated that, as compared with single injection, the additional second injection contributes to prolonged heat release and consequently helps to prevent knock, thereby extending the operating range on the high load side. Tracking the phase space trajectories of individual stochastic particles provides significant insight into the influence of local charge stratification owing to direct injection on HCCI combustion.
Two-stage fuel direct injection (DI) has the potential to expand the operating region and control the autoignition timing in a Diesel fuelled homogeneous charge compression ignition (HCCI) engine. In this work, to investigate the dual-injection HCCI combustion, a stochastic reactor model, based on a probability density function (PDF) approach, is utilized. A new wall-impingement sub-model is incorporated into the stochastic spray model for direct injection. The model is then validated against measurements for combustion parameters and emissions carried out on a four stroke HCCI engine. The initial results of our numerical simulation reveal that the two-stage injection is capable of triggering the charge ignition on account of locally rich fuel parcels under certain operating conditions, and consequently extending the HCCI operating range. Furthermore, both simulated and experimental results on the effect of second injection timing on combustion indicate that there exists an optimal second injection timing to gain maximum engine output work for a given fuel split ratio.
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50 • ATDC, the spray impingement at the edge of the piston corner with 100 • injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapour contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition. Finally, the coupling of CFD and multi-zone Stochastic Reactor Model (SRM) was demonstrated to show improvement in CO and uHC emissions prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.