Epidemiological and clinico-pathological studies indicate a causal relationship between heart disease and Alzheimer’s disease (AD). To learn whether heart disease causes an onset of AD, mice with myocardial infarction (MI) and congestive heart failure (HF) were used to test neuropsychiatric and cognitive behaviors as well as for measurements of AD related protein markers. To this end, adult mice were subjected to ligation of left anterior descending artery (LAD) and about two weeks later high-frequency echocardiography was performed to exam the resulting cardiac structure and function. Three months after successful induction of chronic heart failure (CHF) these mice showed an impairment of learning in the Morris Water Maze task. In addition, the expression of selected molecules, which are involved in β-amyloid metabolism, apoptosis and inflammation on the level of gene transcription and translation, was altered in CHF mice. Our findings provide a plausible explanation that CHF increases the risk of cognitive impairments and alters cerebral β-amyloid metabolism. In addition, our data indicate that the cerebral compensatory mechanisms in response to CHF are brain area and gender specific.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by a severe decline of memory performance. A widely studied AD mouse model is the APPswe/PSEN1ΔE9 (APP/PS1) strain, as mice exhibit amyloid plaques as well as impaired memory capacities. To test whether restoring synaptic plasticity and decreasing β-amyloid load by Parkin could represent a potential therapeutic target for AD, we crossed APP/PS1 transgenic mice with transgenic mice overexpressing the ubiquitin ligase Parkin and analyzed offspring properties. Overexpression of Parkin in APP/PS1 transgenic mice restored activity-dependent synaptic plasticity and rescued behavioral abnormalities. Moreover, overexpression of Parkin was associated with down-regulation of APP protein expression, decreased β-amyloid load and reduced inflammation. Our data suggest that Parkin could be a promising target for AD therapy.
Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson’s disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.