To achieve efficient and accurate remaining life prediction and effectively express the uncertainty of prediction results, this paper proposes a remaining life prediction method based on fuzzy evaluation-Gaussian process regression (FE-GPR). First, the prediction of the remaining useful life (RUL) is affected by unknown variables, such as the environment, and it is difficult to achieve accurate predictions. It is necessary to effectively express the uncertainty of such prediction results. In this paper, we have put forward a RUL prediction method based on GPR, which can realize the RUL prediction with a confidence interval. Second, combined with the characteristics of the GPR method, an observation data preprocessing method based on fuzzy evaluation is proposed. The initial fuzzy evaluation method is established based on expert knowledge. Then, the classification nodes are optimized by the gravitational search algorithm (GSA) and historical data. This method, which uses fuzzy logic combined with expert knowledge, can avoid over-fitting in the case of limited data, and effectively improves the prediction accuracy of the GPR model. Finally, we use NASA PCoE. lithium battery data for a case study. The results show that the FE-GPR method achieves a more accurate RUL prediction and effectively reflects the uncertainty of the prediction results.
Aiming at the problem that the sensor component’s inertial navigation gyro failure symptom is not obvious in a certain aircraft flight control system, this paper proposes a fault cluster recognition method based on fuzzy clustering. First, use wavelet packet decomposition to perform three-layer wavelet packet decomposition on the gyro output data to obtain the feature extraction of the gyro fault signal; then use the fuzzy clustering method to classify the extracted fault signal to achieve gyro fault pattern recognition in the sensor assembly the goal of.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.