Existing methods in the Visual Storytelling field often suffer from the problem of generating general descriptions, while the image contains a lot of meaningful contents remaining unnoticed. The failure of informative story generation can be concluded to the model's incompetence of capturing enough meaningful concepts. The categories of these concepts include entities, attributes, actions, and events, which are in some cases crucial to grounded storytelling. To solve this problem, we propose a method to mine the cross-modal rules to help the model infer these informative concepts given certain visual input. We first build the multimodal transactions by concatenating the CNN activations and the word indices. Then we use the association rule mining algorithm to mine the cross-modal rules, which will be used for the concept inference. With the help of the cross-modal rules, the generated stories are more grounded and informative. Besides, our proposed method holds the advantages of interpretation, expandability, and transferability, indicating potential for wider application. Finally, we leverage these concepts in our encoder-decoder framework with the attention mechanism. We conduct several experiments on the VIsual StoryTelling (VIST) dataset, the results of which demonstrate the effectiveness of our approach in terms of both automatic metrics and human evaluation. Additional experiments are also conducted showing that our mined cross-modal rules as additional knowledge helps the model gain better performance when trained on a small dataset.
Grounded video description (GVD) encourages captioning models to attend to appropriate video regions (e.g., objects) dynamically and generate a description. Such a setting can help explain the decisions of captioning models and prevents the model from hallucinating object words in its description. However, such design mainly focuses on object word generation and thus may ignore fine-grained information and suffer from missing visual concepts. Moreover, relational words (e.g., "jump left or right") are usual spatio-temporal inference results, i.e., these words cannot be grounded on certain spatial regions. To tackle the above limitations, we design a novel relational graph learning framework for GVD, in which a language-refined scene graph representation is designed to explore fine-grained visual concepts. Furthermore, the refined graph can be regarded as relational inductive knowledge to assist captioning models in selecting the relevant information it needs to generate correct words. We validate the effectiveness of our model through automatic metrics and human evaluation, and the results indicate that our approach can generate more fine-grained and accurate description, and it solves the problem of object hallucination to some extent. CCS CONCEPTS • Computing methodologies → Scene understanding.
The journey of reducing noise from distant supervision (DS) generated training data has been started since the DS was first introduced into the relation extraction (RE) task. For the past decade, researchers apply the multiinstance learning (MIL) framework to find the most reliable feature from a bag of sentences. Although the pattern of MIL bags can greatly reduce DS noise, it fails to represent many other useful sentence features in the datasets. In many cases, these sentence features can only be acquired by extra sentence-level human annotation with heavy costs. Therefore, the performance of distantly supervised RE models is bounded. In this paper, we go beyond typical MIL framework and propose a novel Contrastive Instance Learning (CIL) framework. Specifically, we regard the initial MIL as the relational triple encoder and constraint positive pairs against negative pairs for each instance. Experiments demonstrate the effectiveness of our proposed framework, with significant improvements over the previous methods on NYT10, GDS and KBP.
It is a consensus that small models perform quite poorly under the paradigm of self-supervised contrastive learning. Existing methods usually adopt a large off-the-shelf model to transfer knowledge to the small one via distillation. Despite their effectiveness, distillation-based methods may not be suitable for some resource-restricted scenarios due to the huge computational expenses of deploying a large model. In this paper, we study the issue of training self-supervised small models without distillation signals. We first evaluate the representation spaces of the small models and make two non-negligible observations: (i) the small models can complete the pretext task without overfitting despite their limited capacity and (ii) they universally suffer the problem of over clustering. Then we verify multiple assumptions that are considered to alleviate the over-clustering phenomenon. Finally, we combine the validated techniques and improve the baseline performances of five small architectures with considerable margins, which indicates that training small self-supervised contrastive models is feasible even without distillation signals. The code is available at https://github.com/WOWNICE/ssl-small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.