Synthetic aperture radar (SAR) is an effective and important technique in monitoring crop and other agricultural targets because its quality does not depend on weather conditions. SAR is sensitive to the geometrical structures and dielectric properties of the targets and has a certain penetration ability to some agricultural targets. The capabilities of SAR for agriculture applications can be organized into three main categories: crop identification and crop planting area statistics, crop and cropland parameter extraction, and crop yield estimation. According to the above concepts, this paper systematically analyses the recent progresses, existing problems and future directions in SAR agricultural remote sensing. In recent years, with the remarkable progresses in SAR remote sensing systems, the available SAR data sources have been greatly enriched. The accuracies of the crop classification and parameter extraction by SAR data have been improved progressively. But the development of modern agriculture has put forwarded higher requirements for SAR remote sensing. For instance, the spatial resolution and revisiting cycle of the SAR sensors, the accuracy of crop classification, the whole phenological period monitoring of crop growth status, the soil moisture inversion under the condition of high vegetation coverage, the integrations of SAR remote sensing retrieval information with hydrological models and/or crop growth models, and so on, still need to be improved. In the future, the joint use of optical and SAR remote sensing data, the application of multi-band multi-dimensional SAR, the precise and high efficient modeling of electromagnetic scattering and parameter extraction of crop and farmland composite scene, the development of light and small SAR systems like those onboard unmanned aerial vehicles and their applications will be active research areas in agriculture remote sensing. This paper concludes that SAR remote sensing has great potential and will play a more significant role in the various fields of agricultural remote sensing.
It is well known that timely crop growth monitoring and accurate crop yield estimation at a fine scale is of vital importance for agricultural monitoring and crop management. Crop growth models have been widely used for crop growth process description and yield prediction. In particular, the accurate simulation of important state variables, such as leaf area index (LAI) and root zone soil moisture (SM), is of great importance for yield estimation. Data assimilation is a useful tool that combines a crop model and external observations (often derived from remote sensing data) to improve the simulated crop state variables and consequently model outputs like crop total biomass, water use and grain yield. In spite of its effectiveness, applying data assimilation for monitoring crop growth at the regional scale in China remains challenging, due to the lack of high spatiotemporal resolution satellite data that can match the small field sizes which are typical for agriculture in China. With the accessibility of freely available images acquired by Sentinel satellites, it becomes possible to acquire data at high spatiotemporal resolution (10–30 m, 5–6 days), which offers attractive opportunities to characterize crop growth. In this study, we assimilated remotely sensed LAI and SM into the Word Food Studies (WOFOST) model to estimate winter wheat yield using an ensemble Kalman filter (EnKF) algorithm. The LAI was calculated from Sentinel-2 using a lookup table method, and the SM was calculated from Sentinel-1 and Sentinel-2 based on a change detection approach. Through validation with field data, the inverse error was 10% and 35% for LAI and SM, respectively. The open-loop wheat yield estimation, independent assimilations of LAI and SM, and a joint assimilation of LAI + SM were tested and validated using field measurement observation in the city of Hengshui, China, during the 2016–2017 winter wheat growing season. The results indicated that the accuracy of wheat yield simulated by WOFOST was significantly improved after joint assimilation at the field scale. Compared to the open-loop estimation, the yield root mean square error (RMSE) with field observations was decreased by 69 kg/ha for the LAI assimilation, 39 kg/ha for the SM assimilation and 167 kg/ha for the joint LAI + SM assimilation. Yield coefficients of determination (R2) of 0.41, 0.65, 0.50, and 0.76 and mean relative errors (MRE) of 4.87%, 4.32%, 4.45% and 3.17% were obtained for open-loop, LAI assimilation alone, SM assimilation alone and joint LAI + SM assimilation, respectively. The results suggest that LAI was the first-choice variable for crop data assimilation over SM, and when both LAI and SM satellite data are available, the joint data assimilation has a better performance because LAI and SM have interacting effects. Hence, joint assimilation of LAI and SM from Sentinel-1 and Sentinel-2 at a 20 m resolution into the WOFOST provides a robust method to improve crop yield estimations. However, there is still bias between the key soil moisture in the root zone and the Sentinel-1 C band retrieved SM, especially when the vegetation cover is high. By active and passive microwave data fusion, it may be possible to offer a higher accuracy SM for crop yield prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.