Background: Stress-induced childhood-onset neurodegeneration with variable ataxia and seizures (CONDSIAS) is an autosomal recessive disorder caused by defects in the ADP-Ribosylhydrolase Like 2 (ADPRHL2; OMIM: 618170) gene. This gene encodes the ADP-ribosylhydrolase enzyme (ARH3) that eliminates the addition of poly-ADP ribose (PAR) in the cellular stress onto proteins in the ADP-ribosylation process in which adding one or more ADP-ribose moieties onto the target proteins in the post-translational modification have occurred. In this study, we report a new case of CONDSIAS in the Iranian population. A literature review of CONDSIAS is also included. Case presentation: A four-year-old female patient, born to a consanguineous Iranian family, was referred with various clinical symptoms including impaired speech, variable ataxia, infrequent seizures, and gradual onset of truncal hypotonia. Over time, she developed complete motor and speech regression, bilateral sensorineural hearing loss, infrequent seizures, abdominal distension and gastrointestinal (GI) intolerance, and loss of consciousness. To better molecularly diagnose, trio-whole-exome sequencing (WES) was performed on the proband and her parents. Sanger sequencing was also applied to investigate co-segregation analysis. Using in silico predictive tools, the possible impacts of the variant on the structure and function of ADPRHL2 protein were predicted. All basic metabolic tests were normal, while serial coronal magnetic resonance imaging (MRI) showed progressive cerebral and cerebellar atrophy in addition to cerebral white matter signal changes as a novel neuroimaging finding. GI intolerance was another novelty of clinical scenarios in the patient. An auditory brainstem response test showed a severe bilateral sensorineural hearing loss. An electroencephalogram also confirmed focal seizures. From the molecular perspective, a novel homozygous frameshift variant in the ADPRHL2 gene (NM_017825.2; c.636_639del, p.(Leu212fs)) was identified by WES. Conclusions: CONDSIAS is an ultra-rare neurodegenerative disorder. In the present study, we introduced extraneurological and neuroimaging findings of this disorder in a female child caused by a novel frameshift variation in the ADPRHL2 gene.
Introduction: In this study the full sequence of the calcitonin receptor gene (CALCR) in a group of Iranian males suffering from recurrent calcium urinary stones was compared with that of a control group. Methods: Serum and urinary biochemistry related to urolithiasis were evaluated in 105 males diagnosed with recurrent kidney calcium stones and 101 age-matched healthy control males. The polymerase chain reaction single-strand conformation polymorphism method was used to detect new polymorphisms in the CALCR. Results: Nine polymorphisms were detected; seven were in the non-coding and two in the coding region. The T allele associated with the 3′UTR+18C>T polymorphism was observed exclusively in the stone formers. The exact odds ratio for the T allele in this locus for those at risk of stone formation was 36.72 (95% CI 4.95-272.0) (p < 0.001). The mean (standard deviation) urine calcium concentration was 117 (60) mg/l in patients with the C allele and 152 (72) mg/l in those with the T allele (p = 0.03). In addition, IVS1-6T>C and IVS1insA polymorphisms in intron 1 were associated with kidney stone disease (p < 0.001). Regarding single nucleotide polymorphism 447, mean (standard deviation) of serum calcitonin levels were 16.7 (18.7) pg/ml, 10.5 (11.0) pg/ml and 9.94 (9.7) pg/ml in subjects with TT, TC and CC genotypes, respectively (p = 0.01). Conclusion: Our data indicate a potential association between 3′UTR+18C>T and intron 1 polymorphisms in the CALCR and the risk of kidney stone disease.
Transforming growth factor-beta (TGF-beta) superfamily regulates matrix metalloproteinases (MMP), which intrinsically regulate various cell behaviors leading to metastasis. We investigated the effect of TGF-beta(2) on MMP-2 regulation in human bladder carcinoma cell line 5637. Zymography, ELISA, and real-time polymerase chain reaction revealed that TGF-beta(2) stimulated MMP-2 production, but the transcription of its gene remained unchanged. Wortmannin could not inhibit MMP-2 secretion and activity and conversely the amount of the protein and its enzymatic activity were increased. These data suggest that TGF-beta(2) increased MMP-2 at the posttranscriptional level and this upregulation was independent of phosphatidylinositol 3-kinase signaling pathway.
Oguchi disease is a rare autosomal recessive form of congenital stationary night blindness (CSNB) characterized by specific features such as golden-brown discoloration of the fundus called Mizuo-Nakamura phenomenon which is distinguishable by fundoscopy, and retinography. Clinical diagnosis is confirmed through genetic test. Two known genes in pathogenesis of Oguchi disease are SAG and GRK1. A 35-year-old Iranian male exhibiting the clinical features of congenital stationary night blindness, was referred to the genetic clinic of Dr. Farhud, Tehran, Iran in 2012 and examined. Ophthalmic examination including slit-lamp biomicroscopy, perimetry and funduscopy was performed. Additionally, the full-field electroretinography and molecular testing for congenital stationary night blindness were performed. Molecular genetic tests, including the analysis of GSK1 and SAG genes exon-intron boundaries were performed for this patient and his family. According to the sequencing results, we did not find any mutation in GSK1 gene. However, a new homozygote mutation at location chr2:233320735, c.517delC, p.P96LfsX28 was identified in exon four of SAG gene. This deletion causes a frame shift mutation, and premature stop codon that results in deletion of about 281 amino acid residues of S-antigen visual arrestin protein (from entire C-terminal). This mutation was also found in patient’s parents and one of his sister as heterozygote form. This is the first molecular evidence for SAG gene mutation in an Iranian family affected with Oguchi disease type 1. The identification of the new c.517delC, p.P96LfsX28 mutation in this family with Oguchi disease can confirm the pathogenicity of this variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.