In this study, quartz and feldspar powders were surface treated using a silane coupling agent to achieve a more compatible mineral surface with the polymer matrix. Details of surface characteristics of minerals were examined by energydissipative X-ray spectroscopy, contact angle measurements, and infrared spectroscopy. Thermoplastic polyurethane-TPU was compounded with minerals using the melt-blending technique. Mechanical, thermo-mechanical, meltflow, and morphological characterizations of TPU and relevant composites were performed by utilizing tensile and Shore hardness tests, dynamic mechanical analysis (DMA), melt flow index (MFI) measurements, and scanning electron microscopy (SEM), respectively. Water repellency of TPU and composites were also evaluated experimentally. Effects of surface treatments were discussed by comparing the results of composites filled with pristine and modified minerals. Results revealed that enrichment of quartz and feldspar surfaces confer mechanical and thermo-mechanical performance of composites. Mineral inclusions caused no drastic changes to the MFI parameter of TPU. The silane layer on the mineral surface displayed a barrier effect to water uptake of composites. Homogeneous dispersion and improved interfacial adhesion of mineral particles to the TPU phase were confirmed with help of SEM observations. Quartz exhibited slightly higher performance thanks to its silicarich composition. The findings of this research exhibited the considerable influence of the silane layer on the mineral surface on the mechanical performance of TPU-based composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.