Within the next few years, sentiment analysis or opinion mining is set to become an important component of real-world applications for product manufacturers, e-commerce companies, and potential customers. Sentiment analysis deals with the computational assessment of people’s opinions apparent or hidden within the text according to three levels: document, sentence and aspect levels. The aspect-level is increasingly becoming an active phase of sentiment analysis. At this level, the aim is to determine the hidden target of opinion represented in datasets, known as aspect term identification. This paper proposes an original hybrid model combining semantic relations and frequency-based approach with supervised classifiers for implicit aspect identification (IAI). The proposed approach is directed towards improving the F1-performances for traditional supervised classifiers commonly used in this field based on eager and lazy learning, and deep learning technique using long short-term memory whit attention mechanism applied for IAI. Particularly, this work addresses aspect term extraction and aggregation, the two sub-tasks of IAI, involving adjectives and verbs. The effects of this approach are empirically examined on multiple datasets of electronic products and restaurant reviews with multiple aspect granularity levels. Comparing this method with similar approaches clearly shows the benefits of this method: (i) the use of an appropriately selected WordNet semantic relations of adjectives and verbs that significantly helps classifiers for IAI. (ii) Using the hybrid model helps classifiers better handle these selected WordNet semantic relations and therefore deal better with IAI.
Crime analysis has become an interesting field that deals with serious public safety issues recognized around the world. Today, investigating Twitter Sentiment Analysis (SA) is a continuing concern within this field. Aspect based SA, the process by which information can be extracted, analyzed and classified, is applied to tweet datasets for sentiment polarity classification to predict crimes. This paper addresses the aspect identification task involving implicit aspect implied by adjectives and verbs for crime tweets. The proposed hybrid model is based on WordNet semantic relations and Term-Weighting scheme, to enhance training data for (1) Crime Implicit Aspect sentences detection (IASD) and (2) Crime Implicit Aspect Identification (IAI). The performance is evaluated using three classifiers Multinomial Naïve Bayes, Support Vector Machine and Random Forest on three Twitter crime datasets. The obtained results demonstrate the effectiveness of WN synonym and definition relations and prove the importance of verbs in training data enhancement for crime IASD and IAI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.