The blockchain is a distributed technology which allows establishing trust among unreliable users who interact and perform transactions with each other. While blockchain technology has been mainly used for crypto-currency, it has emerged as an enabling technology for establishing trust in the realm of the Internet of Things (IoT). Nevertheless, a naive usage of the blockchain for IoT leads to high delays and extensive computational power. In this paper, we propose a blockchain architecture dedicated to being used in a supply chain which comprises different distributed IoT entities. We propose a lightweight consensus for this architecture, called LC4IoT. The consensus is evaluated through extensive simulations. The results show that the proposed consensus uses low computational power, storage capability and latency.
Security in the fifth generation (5G) networks has become one of the prime concerns in the telecommunication industry. 5G security challenges come from the fact that 5G networks involve different stakeholders using different security requirements and measures. Deficiencies in security management between these stakeholders can lead to security attacks. Therefore, security solutions should be conceived for the safe deployment of different 5G verticals (e.g., industry 4.0, Internet of Things (IoT), etc.). The interdependencies among 5G and fully connected systems, such as IoT, entail some standard security requirements, namely integrity, availability, and confidentiality. In this article, we propose a hierarchical architecture for securing 5G enabled IoT networks, and a security model for the prediction and detection of False Data Injection Attacks (FDIA) and Distributed Denial of Service attacks (DDoS). The proposed security model is based on a Markov stochastic process, which is used to observe the behavior of each network device, and employ a range-based behavior sifting policy. Simulation results demonstrate the effectiveness of the proposed architecture and model in detecting and predicting FDIA and DDoS attacks in the context of 5G enabled IoT.
FEderated Edge Learning (FEEL) has emerged as a leading technique for privacy-preserving distributed training in wireless edge networks, where edge devices collaboratively train machine learning (ML) models with the orchestration of a server. However, due to frequent communication, FEEL needs to be adapted to the limited communication bandwidth. Furthermore, the statistical heterogeneity of local datasets' distributions, and the uncertainty about the data quality pose important challenges to the training's convergence. Therefore, a meticulous selection of the participating devices and an analogous bandwidth allocation are necessary. In this paper, we propose a data-quality based scheduling (DQS) algorithm for FEEL. DQS prioritizes reliable devices with rich and diverse datasets. In this paper, we define the different components of the learning algorithm and the data-quality evaluation. Then, we formulate the device selection and the bandwidth allocation problem. Finally, we present our DQS algorithm for FEEL, and we evaluate it in different data poisoning scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.