In this work, two fluorinated poly(1,2,3-triazolium ionic liquid)s (PTILs) are accessed in two steps by copper(I)-catalyzed azide-alkyne cycloaddition AA + BB polyaddition between an α,ω-dialkyne-perfluoroether and either 1,12-dodecyl-diazide or α,ω-diazido-tetra(ethylene glycol), followed by N-alkylation of the resulting poly(1,2,3-triazole)s (PTs) by N-methyl bis(trifluoromethylsulfonyl)imide. The structure/properties correlations of PTILs and their PT intermediates are discussed based on solubility, 1 H, 13 C and 19 F NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and broadband dielectric spectroscopy. Dodecyl-and tetra(ethylene glycol)-based PTILs exhibit glass transition temperatures of − 38 and − 29 °C, temperatures at 10% weight loss of ca. 340 °C and anhydrous ionic conductivities at 30 °C of 1.2 × 10 −5 and 8.4 × 10 −6 S cm −1 , respectively. The impact of different lithium salts (i.e. LiSO 3 CF 3 , LiTFSI, and LiClO 4 ,) on ionic conductivity of the tetra(ethylene glycol)-based PTIL was also investigated. A ca. twofold increase in ionic conductivity could be obtained by the addition of 5 wt% of LiClO 4 .
In recent years, block copolymer micellar assemblies with the formation of structured nanoparticles have been considered as an emerging technology in membrane science. In this work, the poly(methyl methacrylate)-block-poly(sulfobetaine methacrylate) copolymer was directly synthesized using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization and self-assembled in a selective medium (2,2,2-trifluroethanol/water). Then, poly(methyl methacrylate)-block-poly(sulfobetaine methacrylate) copolymers were casted onto a commercial PVDF membrane to form a thin porous selective layer. The prepared nanoparticles and the resulting membranes were fully characterized using microscopy methods (SEM and AFM), whereas the membrane performance was evaluated in terms of permeability and the molecular weight cut off. The results from this study demonstrate the preparation of an ultrafiltration membrane made from the assembly of poly(methyl methacrylate)-block-poly(sulfobetaine methacrylate) copolymer micelles on the top of a PVDF membrane in the form of thin film. The copolymer chain orientation leads to a membrane surface enriched in hydrophilic PSBMA, which confers a suitable behavior for aqueous solution filtration on the membrane, while preserving the high chemical and mechanical resistance of the PVDF.
A well-defined block copolymer brush poly(glycidyl methacrylate)-graft-(poly(methyl methacrylate)-block- poly(oligo(ethylene glycol) methyl ether methacrylate)) (PGMA-g-(PMMA-b-POEGMA)) is synthesized via grafting from an approach based on a combination of click chemistry and reversible addition-fragmentation chain transfer (RAFT) polymerization. The resulting block copolymer brushes were characterized by 1H-NMR and size exclusion chromatography (SEC). The self-assembly of the block copolymer brush was then investigated under selective solvent conditions in three systems: THF/water, THF/CH3OH, and DMSO/CHCl3. PGMA-g-(PMMA-b-POEGMA) was found to self-assemble into spherical micelle structures as analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The average size of the particles was much smaller in THF/CH3OH and DMSO/CHCl3 as compared with the THF/water system. Thin film of block copolymer brushes with tunable surface properties was then prepared by the spin-coating technique. The thickness of the thin film was confirmed by scanning electron microscopy (SEM). Atom force microscopy (AFM) analysis revealed a spherical morphology when the block copolymer brush was treated with poor solvents for the backbone and hydrophobic side chains. The contact angle measurements were used to confirm the surface rearrangements of the block copolymer brushes.
Synthetic peptides with cyclic arginine-glycine-aspartate motif (cRGD) play an important role in cell recognition and cell adhesion. cRGD-decorated soluble polymers and polymeric nanoparticles have been increasingly used for cell-specific delivery of antitumor drugs. While the significance of cRGD modification for tumor cell-specific targeting of polymeric carriers is well-accepted, straightforward procedures ensuring the fidelity of cRGD modification of polymeric systems are still lacking. Herein, we have reported an in-situ polymerization approach for synthesis of cRGD-end-functionalized well-defined polymers as potential building blocks of targeted drug delivery systems. A new cRGD peptide functionalized RAFT agent was synthesized as confirmed by MALDI-TOF and 1 H NMR spectroscopy. The ability of this RAFT agent to control polymerizations was then tested using two different monomers oligoethyleneglycol acrylate and t-butyl methacrylate. The RAFT-controlled character of polymerizations and the living characteristic of the synthesized polymers were investigated through a series of kinetic experiments. The cytotoxicity and targeting capability of cRGD-functionalized OEGA polymers were investigated using cell lines expressing α v β 3 integrins at varying extents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.