The structural and electronic properties of interfaces composed of donor and acceptor molecules play important roles in the development of organic opto-electronic devices. Epitaxial growth of organic semiconductor molecules offers a possibility to control the interfacial structures and to explore precise properties at the intermolecular contacts. 5,6,11,12-tetraazanaphthacene (TANC) is an acceptor molecule with a molecular structure similar to that of pentacene, a representative donor material, and thus, good compatibility with pentacene is expected. In this study, the physicochemical properties of the molecular interface between TANC and pentacene single crystal (PnSC) substrates were analyzed by atomic force microscopy, grazing-incidence X-ray diffraction (GIXD), and photoelectron spectroscopy. GIXD revealed that TANC molecules assemble into epitaxial overlayers of the (010) oriented crystallites by aligning an axis where the side edges of the molecules face each other along the [1¯10] direction of the PnSC. No apparent interface dipole was found, and the energy level offset between the highest occupied molecular orbitals of TANC and the PnSC was determined to be 1.75 eV, which led to a charge transfer gap width of 0.7 eV at the interface.
A proton-coupled electron transfer (PCET) reaction was widely studied with isolated organic molecules and metal complexes in solution in view of the biological catalytic reaction, while studying this reaction in the crystalline or solid-state phase, which has a novel example, would give insight into the rather internal environment of proteins without solvation and a creation of new molecular materials. We tried to crystallize a hydrogen-bonded (H-bonded) coordination polymer with one-dimensional nanoporous channels, formed from redox-active Ru complexes, [Ru(Hbim)] (Hbim = 2,2'-biimidazolate monoanion). As a result, a synchronized collective PCET phenomenon was observed for the molecular nanoporous crystal by novel solid-state cyclic voltammetry (CV), which could be measured by only setting some crystals on the electrode surface. The nanoporous crystals, {[Ru(Hbim)]} (1), are simultaneously induced to a synchronized collective RuRu mixed-valence state, {RuRu}, with alternating arrays of Ru and Ru complexes by PCET in a way of the reductive state of {RuRu}. Further, a new crystal with {RuRu}, {[Ru(Hbim)(Hbim)][Ru(bim) (Hbim)][K(MeOBz)]} (2), was also prepared, and the solid-state CV revealed the same electrochemical behavior of {RuRu} with 1. The single crystal with {RuRu} of 2 was unusually a semiconductor with 5.12 × 10 S/cm conductivity at 298 K by an impedance method (8.01 × 10 S/cm by a direct-current method at 277 K). Thus, an unprecedented electron-hopping conductor driven by a low-barrier proton transfer through a PCET mechanism (E = 0.30 eV) was realized in the H-bonding molecular crystal with {RuRu}. Such studies on a PCET reaction in the crystalline state is not only worthwhile as a model of essential biological reactions without solvation, but also proposed to a new design of molecular materials to occur an electron transfer by using an intermolecular H-bond.
Abstract:The spin-crossover (SCO) phenomenon between a high-spin and a low-spin state has attracted much attention in the field of materials science. Among the various kinds of SCO complexes, the triazole-bridged iron(II) polymeric chain system, [Fe(II)(R-trz) 3 ]X 2 ·xH 2 O (where trz is triazole and X is the anion), exhibiting the SCO phenomenon with thermal hysteresis around room temperature, has been extensively studied from the viewpoint of molecular memory and molecular devices. In connection with this system, we have controlled the SCO phenomenon according to the characteristic properties of counter ions. In the case of X being C n H 2n+1 SO 3 − , the spin transition temperature (T 1/2 ) increases with increasing the length (n) of the alkyl chain of the counter ion and saturates above n = 5, which is attributed to the increase in the intermolecular interaction of the alkyl chains of C n H 2n+1 SO 3 − , called the fastener effect. The hysteresis width of T 1/2 decreases with increasing n, showing the even-odd, also known as parity, effect. In the cases where X is toluenesulfonate (tos: CH 3 C 6 H 4 SO 3 − ) and aminobenzenesulfonate (abs: NH 2 C 6 H 4 SO 3 − ), T 1/2 and its hysteresis width vary drastically with the structural isomerism (ortho-, metha-, and para-substitution) of counter ions, which implies the possibility of photoinduced spin transition by means of the photoisomerization of counter ions. From this strategy, we have synthesized [Fe(II)(NH 2 -trz) 3 ](SP150) 2 ·2H 2 O (SP150 = N-alkylsulfonated spiropyran) and investigated the SCO phenomenon. Moreover, we have developed [Fe(II)(R-trz) 3 ]@Nafion films exhibiting spin transition around room temperature, where the Nafion membrane behaves as a counter anion as well as a transparent substrate, and investigated the photogenerated high-spin state below 35 K. The lifetime of the photogenerated high-spin state strongly depends on the intensity of irradiated light.
The first iron complexes of high-spin iron(II) species directly coordinated to verdazyl radicals, [Fe(II)(vdCOO)2(H2O)2]·2H2O (1; vdCOO(-) = 1,5-dimethyl-6-oxo-verdazyl-3-carboxylate) and [Fe(II)(vdCOO)2(D2O)2]·2D2O (2), were synthesized. The crystal structure of 1 was investigated by single-crystal X-ray diffraction at room temperature and at 90 K. The compound crystallizes in the P1 space group with no phase transition between 300 and 90 K. The crystals are composed of discrete [Fe(II)(vdCOO)2(H2O)2] complexes and crystallization water molecules. In the complex, two vdCOO(-) ligands coordinate to the iron(II) ion in a head-to-tail arrangement and two water molecules complete the coordination sphere. The Fe-X (X = O, N) distances vary in the 2.069-2.213 Å range at 300 K and in the 2.0679-2.2111 Å range at 90 K, indicating that the iron(II) ion is in its high-spin (HS) state at both temperatures. At 300 K, one of the coordinated water molecules is H-bonded to two crystallization water molecules whereas the second one appears as loosely H-bonded to the two oxygen atoms of the carboxylate group of two neighboring complexes. At 90 K, the former H-bonds remain essentially the same whereas the second coordinated water molecule reveals a complicated behavior appearing simultaneously as tightly H-bonded to two oxygen atoms and non-H-bonded. The (57)Fe Mössbauer spectra, recorded between 300 K and 10 K, give a clue to this situation. They show two sets of doublets typical of HS iron(II) species whose intensity ratio varies smoothly with temperature. It demonstrates the existence of an equilibrium between the high temperature and low temperature forms of the compounds. The solid-state magic angle spinning (2)H NMR spectra of 2 were recorded between 310 K and 193 K. The spectra suggest the existence of a strongly temperature-dependent motion of one of the coordinated water molecules in the whole temperature range. Variable-temperature magnetic susceptibility measurements indicate an antiferromagnetic interaction (J(Fe-vd) = -27.1 cm(-1); H = -J(ij)S(i)S(j)) of the HS iron(II) ion and the radical spins with high g(Fe) and D(Fe) values (g(Fe) = 2.25, D(Fe) = +3.37 cm(-1)) for the HS iron(II) ion. Moreover, the radicals are strongly antiferromagnetically coupled through the iron(II) center (J(vd-vd) = -42.8 cm(-1)). These last results are analysed based on the framework of the magnetic orbitals formalism.
Double-bridged cofacial Ni porphyrin dimers 2 with 2,2′-bipyridyl pillars were effectively prepared by a one-step reductive homocoupling reaction of bis(chloropyridyl)-substituted Ni porphyrin derivatives followed by a specific separation of a cyanopropyl-modified silica gel column using pyridine eluent systems. The structural analyses of 2 and its Pd complex were carried out in their solid and solution states by means of X-ray single crystal analysis and NMR, respectively. The complexation of η 3 -allylpalladium chloride (Pd) with 2 on the spatially restricted 2,2-bipyridine moieties on 2 gave a 2:1 (Pd:2) complex, in which the 2,2′-bipyridine ligands only provided one of the N atoms on a 2,2′-bipyridine ligand to a Pd. Therefore, the 2,2-bipyridine moieties acted as a monodentate ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.