Pyrazines are widespread chemical compounds that include pheromones and odors. Herein, a novel mechanism used by Pseudomonas fluorescens SBW25 to biosynthesize monocyclic pyrazines is reported. Heterologous expression of the papABC genes that synthesize the natural α‐amino acid 4‐aminophenylalanine (4APhe), together with three adjacent papDEF genes of unknown function, in Escherichia coli resulted in the production of 2,5‐dimethyl‐3,6‐bis(4‐aminobenzyl)pyrazine (DMBAP), which comprised two symmetrical aminobenzyl moieties derived from 4APhe. It is found that PapD is a novel amino acid C‐acetyltransferase, which decarboxylates and transfers acetyl residues to 4APhe, to generate an α‐aminoketone, which spontaneously dehydrates and condenses to give dihydro DMBAP. PapF is a novel oxidase in the amine oxidase superfamily that oxidizes dihydro DMBAP to yield the pyrazine ring of DMBAP. These two enzymes constitute a unique mechanism for synthesizing monocyclic pyrazines and might serve as a novel strategy for the enzymatic synthesis of pyrazine derivatives from natural α‐amino acids.
Biomass plastics are expected to contribute to the establishment of a carbon-neutral society by replacing conventional plastics derived from petroleum. The biomass-derived aromatic amine 4-aminocinnamic acid (4ACA) produced by recombinant bacteria is applied to the synthesis of high-performance biopolymers such as polyamides and polyimides. Here, we developed a microbial catalyst that hydrogenates the α,β-unsaturated carboxylic acid of 4ACA to generate 4-aminohydrocinnamic acid (4AHCA). The ability of 10 microbial genes for enoate and xenobiotic reductases expressed in Escherichia coli to convert 4ACA to 4AHCA was assessed. A strain producing 2-enoate reductase from Clostridium acetobutylicum (ca2ENR) reduced 4ACA to 4AHCA with a yield of > 95% mol mol and reaction rates of 3.4 ± 0.4 and 4.4 ± 0.6 mM h OD at the optimum pH of 7.0 under aerobic and anaerobic conditions, respectively. This recombinant strain reduced caffeic, cinnamic, coumaric, and 4-nitrocinnamic acids to their corresponding propanoic acid derivatives. We polycondensed 4AHCA generated from biomass-derived 4ACA by dehydration under a catalyst to form high-molecular-weight poly(4AHCA) with a molecular weight of M = 1.94 MDa. This polyamide had high thermal properties as indicated by a 10% reduction in weight at a temperature of T = 394 °C and a glass transition temperature of T = 240 °C. Poly(4AHCA) derived from biomass is stable at high temperatures and could be applicable to the production of high-performance engineering plastics.
The uncontrolled oxidative decomposition of electrolyte while operating at high potential (> 4.2 V vs Li/Li+) severely affects the performance of high-energy density transition metal oxide-based materials as cathodes in Li-ion batteries. To restrict this degradative response of electrolyte species, the need for functional molecules as electrolyte additives that can restrict the electrolytic decomposition is imminent. In this regard, bio-derived molecules are cost-effective, environment friendly, and non-toxic alternatives to their synthetic counter parts. Here, we report the application of microbially synthesized 2,5-dimethyl-3,6-bis(4-aminobenzyl)pyrazine (DMBAP) as an electrolyte additive that stabilizes high-voltage (4.5 V vs Li/Li+) LiNi1/3Mn1/3Co1/3O2 cathodes. The high-lying highest occupied molecular orbital of bio-additive (DMBAP) inspires its sacrificial in situ oxidative decomposition to form an organic passivation layer on the cathode surface. This restricts the excessive electrolyte decomposition to form a tailored cathode electrolyte interface to administer cyclic stability and enhance the capacity retention of the cathode.
The aromatic diamine 2-(4-aminophenyl)ethylamine (4APEA) is a potential monomer for polymers and advanced materials. Here, 4APEA was produced by fermentation with using genetically engineered Escherichia coli [Masuo et al., Sci Rep, 2016]. Optimizing fed-batch cultures of this strain produced the highest reported yield to date of 4APEA (7.2%; 3.5 g/L vs. glucose) within 72 h. Appropriate aeration was important to maximize production and avoid unfavorable 4APEA degradation. Fermented 4APEA was purified from culture medium and polymerized with methylene diphenyldiisocyanate and hexamethylene diisocyanate to produce polyureas PU-1 and PU-2, respectively. The decomposition temperatures for 10% weight loss (Td10) of PU-1 and PU-2 were 276°C and 302°C, respectively, and were comparable with that of other thermostable aromatic polyureas. This study is the first to synthesize polyureas from the microbial aromatic diamine. Their excellent thermostability will be useful for the industrial production of heat-resistant polymer materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.