Recent studies showed that the sequenceto-sequence (seq2seq) model is a promising approach for morphological reinflection. At the CoNLL-SIGMORPHON 2017 Shared Task for universal morphological reinflection, we basically followed the approach with some minor variations. The results were remarkable in a certain sense. In high-resource scenarios our system achieved 91.46% accuracy (only modestly behind the best system by 3.85%), and in medium-resource scenarios the performance was 65.06% (almost the same as baseline). In low-resource settings, however, the performance was only 1.58%, ranking the worst among submitted systems. In this paper, we present system description and error analysis for the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.