CRK5 is a member of the Arabidopsis thaliana Ca 2+ /calmodulin-dependent kinase-related kinase family. Here, we show that inactivation of CRK5 inhibits primary root elongation and delays gravitropic bending of shoots and roots. Reduced activity of the auxin-induced DR5-green fluorescent protein reporter suggests that auxin is depleted from crk5 root tips. However, no tip collapse is observed and the transcription of genes for auxin biosynthesis, AUXIN TRANSPORTER/AUXIN TRANSPORTER-LIKE PROTEIN (AUX/LAX) auxin influx, and PIN-FORMED (PIN) efflux carriers is unaffected by the crk5 mutation. Whereas AUX1, PIN1, PIN3, PIN4, and PIN7 display normal localization, PIN2 is depleted from apical membranes of epidermal cells and shows basal to apical relocalization in the cortex of the crk5 root transition zone. This, together with an increase in the number of crk5 lateral root primordia, suggests facilitated auxin efflux through the cortex toward the elongation zone. CRK5 is a plasma membrane-associated kinase that forms U-shaped patterns facing outer lateral walls of epidermis and cortex cells. Brefeldin inhibition of exocytosis stimulates CRK5 internalization into brefeldin bodies. CRK5 phosphorylates the hydrophilic loop of PIN2 in vitro, and PIN2 shows accelerated accumulation in brefeldin bodies in the crk5 mutant. Delayed gravitropic response of the crk5 mutant thus likely reflects defective phosphorylation of PIN2 and deceleration of its brefeldin-sensitive membrane recycling.
Proline is not only an essential component of proteins but it also has important roles in adaptation to osmotic and dehydration stresses, redox control, and apoptosis. Here, we review pathways of proline biosynthesis in the three domains of life. Pathway reconstruction from genome data for hundreds of eubacterial and dozens of archaeal and eukaryotic organisms revealed evolutionary conservation and variations of this pathway across different taxa. In the most prevalent pathway of proline synthesis, glutamate is phosphorylated to γ -glutamyl phosphate by γ -glutamyl kinase, reduced to γ -glutamyl semialdehyde by γ -glutamyl phosphate reductase, cyclized spontaneously to 1 -pyrroline-5-carboxylate and reduced to proline by 1 -pyrroline-5-carboxylate reductase. In higher plants and animals the first two steps are catalysed by a bi-functional 1 -pyrroline-5-carboxylate synthase. Alternative pathways of proline formation use the initial steps of the arginine biosynthetic pathway to ornithine, which can be converted to 1 -pyrroline-5-carboxylate by ornithine aminotransferase and then reduced to proline or converted directly to proline by ornithine cyclodeaminase. In some organisms, the latter pathways contribute to or could be fully responsible for the synthesis of proline. The conservation of proline biosynthetic enzymes and significance of specific residues for catalytic activity and allosteric regulation are analysed on the basis of protein structural data, multiple sequence alignments, and mutant studies, providing novel insights into proline biosynthesis in organisms. We also discuss the transcriptional control of the proline biosynthetic genes in bacteria and plants.
Plants have to adapt their metabolism to constantly changing environmental conditions, among which the availability of light and water is crucial in determining growth and development. Proline accumulation is one of the sensitive metabolic responses to extreme conditions; it is triggered by salinity or drought and is regulated by light. Here we show that red and blue but not far-red light is essential for salt-induced proline accumulation, upregulation of Δ1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1) and downregulation of PROLINE DEHYDROGENASE 1 (PDH1) genes, which control proline biosynthetic and catabolic pathways, respectively. Chromatin immunoprecipitation and electrophoretic mobility shift assays demonstrated that the transcription factor ELONGATED HYPOCOTYL 5 (HY5) binds to G-box and C-box elements of P5CS1 and a C-box motif of PDH1. Salt-induced proline accumulation and P5CS1 expression were reduced in the hy5hyh double mutant, suggesting that HY5 promotes proline biosynthesis through connecting light and stress signals. Our results improve our understanding on interactions between stress and light signals, confirming HY5 as a key regulator in proline metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.